Лекции.ИНФО


Автоматизация управления освещением



 

Управление освещением зданий. На освещение мест общего поль­зования жилых, административных и общественных зданий затра­чивается много электроэнергии. Автоматизация управления освеще­нием позволяет установить оптимальный режим работы осветитель­ной сети, что дает экономию электроэнергии и снижает эксплуатаци­онные расходы.

В настоящее время применяются три основные схемы дистанци­онно-автоматического включения освещения лестничных клеток и этажных коридоров зданий: 1) дистанционное включение освеще­ния с помощью кнопочных автоматов с выдержкой времени на от­ключение; 2) управление с помощью фотовыключателей; 3) управ­ление с помощью фотовыключателей и реле времени.

Первая схема предусматривает диспетчерское дистанционное управление, осуществляемое в директивные сроки. Такая схема, как правило, имеет несколько цепей и соответственно автоматических выключателей. Эта схема — пример децентрализованного управле­ния.

Вторая схема работает в автоматическом режиме. Сигнал на включение осветительной сети вырабатывается фотодатчиками, ко­торые устанавливаютсяв нескольких контрольных точках. При наступлении темноты во всех точках вырабатывается сигнал на вклю­чение Осветительной сети. При дневном освещении аналогично происходит отключение сети. Эта схема обычно применяется в помещениях с естественным освещением. Управление освещением по данной схеме происходит централизованно.

Третья схема работает так же, как и вторая, но в ней предусмат­ривается возможность с помощью реле времени отключать часть осве­щения в ночное время. Эта схе­ма— пример автоматического про­граммного управления осветитель­ной сетью. Применение каждой из трех схем определяется технической и экономической целесообразностью.

Так, например, применение пер­вой схемы целесообразно в зданиях до пяти этажей. На рис. 19.8 пред­ставлена схема лестничного осве­щения секции четырехэтажного до­ма с чердаком: при нажатии любой из кнопок автоматических выключателей А свет зажигается на всех лестничных площадках на период времени, достаточной для подъема на верхний этаж. В случае необходимости свет может быть включен на любой лестничной площадке по пути следова­ния. Если освещение необходимо на более продолжительное вре­мя, то свет может быть включен выключателем В, установлен­ным на первом этаже.

В этой схеме применяется автоматический выключатель АВ-2 (рис. 19.9), который устанавливается на лестничных площадках и обеспечивает включение освещения на период от по­лутора до трех минут. Выдержка времени обеспе­чивается специальным пневматическим устройством, представляющим собой резиновую мембрану, кото­рая изгибается при нажатии кнопки и постепенно выпрямляется, продавливая воздух через калибро­ванное отверстие в корпусе. Схема с автоматически­ми выключателями имеет ряд недостатков: 1) необ­ходимость прокладки третьего провода и установки большого количества автоматических выключате­лей; 2) постоянная затемненность лестничной клетки.

Схема централизованного управления с фотовы­ключателями нашла широкое применение для зда­ний в 9—12 этажей. Институт «МосжилНИИпроект» разработал специализированный фотовыключатель для управле­ния освещением. В качестве чувствительного элемента выключа­теля использовано фотосопротивление ФСК, внутреннее сопротив­ление которого находится в обратной зависимости от освещенности. С наступлением темноты величина сопротивления ФСК возрастает и падение напряжения на нем увеличивается. Это на­пряжение оказывается достаточным для зажигания неоновой лампочки МН (рис. 19.10). В цепи лампы МН РП РПТ на­чинает протекать ток, достаточный для срабатывания чувстви­тельного поляризованного реле ОРП-4. Последнее своим переключающим контактом включает катушку реле РПТ-100, реле срабатывает и включает исполнительное реле ИР, которое коммути­рует цепь освещения. Кон­денсатор С предназначен для исключения ложных срабатываний при кратко­временных освещении,или затемнении фотосопротив­ления.

В настоящее время про­мышленностью выпускается большое количество фоторе­ле различных типов и Кон­струкций, пригодных для использования в устройст­вах автоматического управ­ления освещением. В каче­стве примера рассмотрим фотореле типа ФР-1 с чувствительным элементом, реагирующим на естествен­ную освещенность фотосо­противлением ФС-К1Г (рис. 19.11). Последова­тельно с фотосопротивле­нием включена катушка по­ляризованного реле типа РП-7, реагирующая на ток в цепи фотосопротивлейия. Но так как контакты реле РП-7 коммутируют незна­чительный по значению ток и, следовательно, не могут включать осветительную цепь, то в качестве выходное реле типа РПНВ, с более мощными контактами, включенными в цепь осветительной сети. Резистор R2, включенный последовательно с катушкой реле РП-7, ограничивает значение тока, протекающего через фотосопротивление, а резистор R1служит для настройки тока срабатывания реле. Ре­зистор R3, включенный последовательно с катушкой реле РПНВ, является делителем напряжения. Диоды Д1, Д2, Д3и Д4служат для получения постоянного тока.

Фотореле работает следующим образом: при достаточной естест­венной освещенности значение фотосопротивления мало и по об­мотке реле РП-17 протекает ток, равный или несколько больший тока срабатывания. Контакт реле РП-7 замкнут и шунтирует ка­тушку реле РПНВ, которое находится в отключенном состоянии.

При уменьшении естественной освещенности увеличивается значение фотосопротивления и ток, протекающий по катушке реле РП-7, постепенно уменьшается. При достижении определенного значения тока магнитный поток катушки перестает удерживать сер­дечник и реле отключается. Размыкается контакт, шунтирующий катушку реле РПВН, оно срабатывает и включает цепь осветитель­ной сети. При увеличении освещенности цикл повторяется.

 

Для автоматизации управления освещением могут применяться фотореле других типов, имеющие различные электрические схемы, и в качестве чувствительного элемента могут использоваться фото диоды или фототранзисторы, но во всех случаях принцип действия их аналогичен описанному.

В домах свыше 12—16 этажей применяется программное управ­ление освещением, переключающее в ночные часы рабочее освеще­ние на аварийное, что позволяет иметь минимально необходимое освещение и получить значительную экономию электроэнергии. С этой целью в схему управления вводят специальное моторное реле времени с часовым механизмом. Принцип работы реле за­ключается в том, что электродвигатель через редуктор приводит во вращение программный диск с двумя кулачками, которые воз­действуют на выходные контакты.

На рис. 19.12, а приведена кинематическая схема моторного реле времени. Пружинный двигатель 10 часового механизма приводит во вращение оси минутного вращения 4 и суточного 8. Скорость движения осей поддерживается часовым регулятором 1 через зуб­чатый редуктор 2 и 9. На оси 4 фрикционно насажен минутный диск 5, устанавливаемый по указателю 3. На оси 8 фрикционно на­сажен диск 6 с двумя временными, шкалами, устанавливаемый по указателю 7. Часовой диск имеет отверстия, в которых укрепляются специальные штифты 25. При вращении диска штифты входят в зацепление со звездочкой 26 кулачкового механизма 21-24, управ­ляющего контактными пружинами 19, 20. Кулачковый механизм уст­роен таким образом, что замыкание и размыкание контактных пру­жин 19, 20 происходит скачкообразно. Каждая из временных про­грамм может настраиваться независимо по своей шкале. Автомати­ческий завод пружины часового механизма осуществляется электродвигателем 18 через зубчатую передачу 17, 16. Для управле­ния электродвигателем служит микровыключатель 15, который в свою очередь, приводился в действие дифференциальным механиз­мом 11—14.

На рис. 19.12, б приведена принципиальная электрическая схема моторного реле времени. Внешние цепи подключаются к контактам 12 (первая программа) и 6—7 (вторая программа). Питание на электродвигатель подается на зажимы 3—5. Для заземления ис­пользуют зажим 4.

На рис. 19.13 приведена схема управления освещением лестнич­ных маршей и коридоров 16-этажного дома. Как видно из схемы, лампы объединены в группы, которые включаются промежуточными реле и ЗР, причем реле работает только от фотореле, а реле ЗР соединено с реле времени и отключает часть освещения по за­данной программе. Реле 1P предназначено для переключения пи­тания фотореле при аварийном отключении одного из вводов в здание, что могло бы привести к выключению как рабочего, так и аварийного освещения.

Существенная экономия электрической энергии может быть по­лучена при автоматизации управления освещением некоторых по­мещений в школах больницах и зданиях другого назначения. Так, например, в школах включают на время уроков часть освещения коридоров и некоторых других помещений.

На рис. 19.14 приведенатиповая схема автоматического управления освещением в школьномздании, объединенная с звонковой сигнализации и работающая от электрочасов. Для

установления заданных временных периодов включения и отключения освещения необходимо осуществить первоначальное включение автомата 1АВ вначале периода отключения освещения (во время урока). Вклю­чение автомата 1АВ сформирует первый импульс на включение реле . В дальнейшем периоды работы будут устанавливаться автома­тически и точность их выполнения будет зависеть от работы электрических часов.

Реле сработает и своим замыкающим кон­тактом в цепи 1—7 замк­нет цепь питания первой катушки двухкатушечного реле ЗР, оно сработает и разомкнет свой замы­кающий контакт в этой же цепи. Реле ЗР зафиксируется в этом положе­нии специальной пружи­ной и замкнет своим замыкающим контактом цепь 10—11 питания ка­тушки реле времени РВ, если замкнуты контакты программного реле вре­мени РВМ и фотовыклю­чателя ФВК. Настройка реле РВМ производится таким образом, что его контакт замыкается за 30—40 мин до начала за­нятий в школе и размы­кается через некоторое время после окончания всех занятий. Контакт ФВК замкнут при недостаточно наружной освещенности. Реле времени РВ своим замыкающим контактом в цепи 1-12 включает цепь питания катушки магнитного пускателя МП, который включит освещение в цепи А-13, В-14, С-15.

После окончания перемены импульс от звонка поступает уже на катушку реле , так как в цепи реле размыкающий контакт реле ЗР разомкнут; а в цепи катушки замыкающий контакт реле ЗР замкнут; замыкающий контакт реле в цепи 1-8 замкнется и подаст напряжение на вторую катушку реле через его замкнутый контакт, реле опять сработает и зафиксируется пружиной в новом положении. Одновременно разомкнется его контакт в цепи катушки реле РВ, которое с выдержкой времени, необходимой для того, чтобы все учащиеся успели войти в классы, обесточит катушку МП и лампы освещения ЛО погаснут.

После очередного звонка на перемену импульс от звонка посту­пит опять на реле IP и процесс повторится. Использование двухкатушечного реле типа РП-12 с пружинными защелками (на схеме реле ЗР) обеспечивает нормальную работу схемы без повторной на­стройки при временном отключении напряжения. При ремонтных работах имеется возможность включить освещение вручную с помо­щью выключателя ВК. Рассмотренная схема предназначена только для управления рабочим освещением. Аварийное освещение на пе­риод проведения уроков не отключается и управляется фотореле.

Управление наружным освещением. Управление наружным ос­вещением—сложная техническая задача, так как в условиях круп­ных городов это десятки тысяч светильников, зажигаемых и отклю­чаемых в определенное время, это большие мощности электроэнер­гии, одновременно подключаемые к энергосистеме и отключаемые от нее, это специальные длинные линии управления.

В настоящее время приняты две системы управления освещени­ем: дистанционное (местное) с ограниченной зоной действия на квартал (улицу, площадь) и централизованная с зоной действия на микрорайон (район, город).

Особую трудность в организации управления наружным освеще­нием представляет устройство электрического соединения аппарату­ры управления и светильников. В качестве линий соединения при­меняются: специально проложенные линии (воздушные или ка­бельные), силовые линии электрических сетей (воздушные или кабельные), кабели городской телефонной сети. Вид соединитель­ных линий определяется условиями монтажа и экономическим

фактором.

Специальные линии управления наиболее просто решают вопрос электрического соединения. Они удобны и надежны в эксплуатации, но их устройство связано с большими затратами.

Силовые линии электрических сетей позволяют передавать по ним одновременно и команды управления. Для устройства такого электрического канала необходима специальная аппаратура. Усло­вия эксплуатации канала требуют особого режима, так как его ра­бота связана с двумя самостоятельными электрическими системами: управлением наружным освещением и силовым электроснабжением.

Городская телефонная сеть имеет наиболее развитые электриче­ские каналы, позволяющие также одновременно использовать их для передачи команд управления. При использовании телефонных линий для управления наружным освещением напряжение команд ограничивается 60 В постоянного тока. Это вызвано тем, что фон переменного тока может мешать телефонным переговорам, а на­пряжение лимитируется изоляционными свойствами телефонного кабеля.

Электрическая схема дистанционного (местного) управления наружным освещением выполняется на тех же аппаратах, какие применяются для освещения внутри зданий, включая и фотовыключатели. Аппараты управ­ления и коммутации устанавливаются на каждом из осве­щаемых участков территории. При этом управление освеще­нием может осуществляться из одного или нескольких мест.

Централизованное управ­ление наружным освещением, как правило, осуществляется из одного пункта (диспетчер­ской) и предусматривает от­ключение части освещения в ночное время, а также получе­ние информации о состоянии освещения. В связи с более широкими задачами централи­зованной системы (управле­ние, контроль и сигнализа­ция) для ее устройства при­меняется более сложная аппа­ратура и требуется квалифи­цированное обслуживание.

Осветительная сеть группи­руется по секциям, каждая из которых подсоединена к опре­деленному контактору, уста­навливаемому .рядом с сек­цией, а катушки контакторов подключаются к. каналу уп­равления. Таким образом, по цепям управления протекают лишь токи, потребляемые ка­тушками контакторов. Однако при большой протяженности цепей управления одновремен­ное включение многих контак­торов становится затрудни­тельным из-за значительного падения напряжения в цепях управления. В этом случае применяют каскадную схему централизованного управле­ния, осуществляющую после­довательное включение секций осветительной сети.

В качестве примера рас­смотрим схему каскадного включения контакторов (рис. 19.15). Каждая секция осветительной сети имеет свой пункт силового электропитания 1ЙП, 2ПП и т.д., на которых также установлена коммутационная аппара­тура управления. Если переключатели 1ИУ, 2ИУ и т. д. (изби­ратели управления) установлены в положение П и на пункте управления ПУ замкнут выключатель 1, то образуется электри­ческая цепь 1П2 (предохранитель), В (выключатель), 1СД2(со­противление добавочное), контакт 2 переключателя 1ИУ, 1ЛК (катушка линейного контактора), контакт 4 переключателя 1ИУ. Контактор 1ЛК сработает и своими силовыми контактами вклю­чит освещение своей зоны. При этом по аналогичной цепи полу­чит питание катушка контактора 2ЛК второго силового пункта питания 2ПП, который включит освещение своей зоны и подаст напряжение в цепь управления третьим контактором, и т. д.

Для управления освещением при необходимости с силового пункта питания избиратели управления ИУ устанавливают в положение 1. При этом создается цепь питания катушки контактора, например, 1ЛК — предохранитель 1П, добавочное сопротивление 1СД1контакт 1 и контакт ЗИУ. В результате произойдет срабаты­вание контактора 1ЛК и всех последующих, если их ИУ остались в положении П. Следовательно, с любого силового пункта питания можно осуществить управление всеми зонами.

Дополнительные сопротивления СД служат для подбора рабоче­го напряжения катушек контакторов. К недостатку каскадной схе­мы включения следует отнести нарушение всей цепи управления освещением при аварии на одном из силовых питательных пунк­тов.









Читайте также:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 354;


lektsia.info 2017 год. Все права принадлежат их авторам! Главная