Лекции.ИНФО


Гражданской авиации (институт)



 

 

Практическая аэродинамика

Самолета DA 42

 

Учебное пособие

 

 

Ульяновск 2010

 

ББК О53–082.022–011я7

П 69

 

Практическая аэродинамика самолета DA 42 : учеб. пособие / сост. Ю. Н. Стариков, В. П. Бехтир. – 2-е изд., испр.-Ульяновск : УВАУ ГА(И), 2010. – 131 с.

 

Представлены необходимые теоретические сведения по вопросам безопасной эксплуатации самолета DA 42 в нормальных и особых условиях. Распределение материала по темам и последовательность его изложения соответствует учебной программе дисциплины «Практическая аэродинамика самолета DA 42».

Проверить в процессе подготовки к занятиям качество своих знаний можно, ответив на вопросы контрольных тестов, приведенных в пособии. А для того чтобы сделать самостоятельную работу более целенаправленной в конце пособия даны вопросы итогового контроля по дисциплине.

Предназначено для курсантов и студентов заочной формы обучения специализации 160503.65.01 – Летная эксплуатация гражданских воздушных судов, а также для слушателей АУЦ.

Печатается по решению Редсовета училища.

 

ISBN 978-5-7514-0191-7

 

Ó Ульяновск, Ульяновское высшее авиационное училище гражданской авиации (институт), 2010

Ó Исправления, Ульяновск, Ульяновское высшее авиационное училище гражданской авиации (институт), 2012

 

Оглавление

От составителей. 5

Аббревиатуры, используемые при рассмотрении летных характеристик самолета. 6

1. Геометрические и аэродинамические характеристики самолета DA 42 Twin Star 7

1.1. Особенности конструктивно-аэродинамической схемы самолета. 7

1.2. Основные геометрические характеристики самолета. 8

1.3. Аэродинамические характеристики самолета

по кривым зависимости cy = f(a) и cy = f(cx) 10

1.4. Факторы, влияющие на аэродинамические характеристики самолета. 12

1.5. Роль и работа вертикальных законцовок крыла и стабилизатора. 16

2. Основные характеристики силовой установки. 18

2.1. Общие сведения. 18

2.2. Работа лопасти винта в полете. 23

2.3. Режимы работы винта. 25

2.4. Работа винта при увеличении скорости полета. 26

2.5. Работа винта при вводе и выводе из флюгерного положения. 27

3. Горизонтальный полет самолета. 29

3.1. Общие сведения. 29

3.2. Кривые потребных и располагаемых мощностей, анализ скоростей. 30

3.3. Особенности выполнения полета на первом и втором режимах полета. 32

3.4. Факторы, влияющие на летные характеристики самолета. 33

3.5. Дальность и продолжительность полета. 36

3.6. Особенности пилотирования самолета на больших углах атаки. 39

4. Взлет самолета. 40

4.1. Аэродинамическое обоснование взлета самолета. 40

4.2. Характеристики взлета. 42

4.3. Факторы, влияющие на скорость отрыва и длину разбега. 43

4.4. Взлет с уменьшением шума на местности. 44

4.5. Взлет с ВПП при пониженном коэффициенте сцепления. 45

4.6. Взлет с боковым и попутным ветром.. 45

4.7. Порядок расчета взлетных характеристик самолета по номограммам РЛЭ.. 48

4.8. Расчет вертикальной скорости при продолженном взлете

для преодоления препятствия. 50

4.9. Ошибки при выполнении взлета. 51

5. Набор высоты и снижение. 53

5.1. Общие сведения о наборе высоты.. 53

5.2. Влияние эксплуатационных факторов на характеристики набора. 54

5.3. Порядок набора высоты.. 56

5.4. Общие сведения о снижении. 59

5.5. Поляра снижения. 60

5.6. Порядок снижения. 62

6. Заход на посадку, посадка самолета и уход на второй круг. 65

6.1. Порядок захода на посадку и посадка самолета. 65

6.2. Посадочные характеристики самолета. 67

6.3. Факторы, влияющие на посадочные характеристики. 68

6.4. Расчет посадочных характеристик. 70

6.5. Уход на второй круг. 72

6.6. Посадка с боковым ветром.. 73

6.7. Ошибки при выполнении посадки. 75

7. Особенности характеристик устойчивости и управляемости. 77

7.1. Общие сведения о центровке. 77

7.2. Протокол взвешивания и определения центровки. 79

7.3. Принцип расчета центровки. 80

7.4. Продольное равновесие самолета. 82

7.5. Продольная устойчивость самолета по углу атаки (перегрузке) 83

7.6. Продольная статическая устойчивость самолета по скорости. 85

7.7. Продольная управляемость самолета. 86

7.8. Поперечное равновесие самолета. 87

7.9. Путевое равновесие самолета. 87

7.10. Путевая устойчивость самолета. 88

7.11. Поперечная устойчивость самолета. 89

7.12. Путевая и поперечная управляемость самолета. 90

8. Полет при несимметричной тяге. 91

8.1. Поведение самолета при отказе двигателя. 91

8.2. Изменение аэродинамических и летных характеристик при отказе двигателя. 92

8.3. Основные виды балансировки с отказавшим двигателем.. 93

8.4. Отказ двигателя на взлете. 95

8.5. Отказ двигателя в наборе высоты на начальном этапе
и в горизонтальном полете. 97

8.6. Посадка с одним неработающим двигателем.. 98

8.7. Уход на второй круг с одним неработающим двигателем.. 99

9. Характеристики прочности самолета и особенности полета в неспокойном воздухе. 100

9.1. Особенности полета в условиях болтанки. 100

9.2. Пилотирование в условиях турбулентности и выхода на большие углы атаки. Выход из непреднамеренного штопора. 103

9.3. Особенности полета в условиях вихревого следа за самолетом.. 104

9.4. Изменение летных характеристик при попадании в условия сдвига ветра. 105

10. Особенности полета самолета при обледенении. 108

Контрольные тесты.. 111

Вопросы итогового контроля. 128

Используемая литература. 130

 

 

От составителей

Обращаем внимание читателей на то, что самолет DA 42 австрийского производства, поэтому на шкалах приборов, на номограммах в РЛЭ для обозначения физических величин употребляются неметрические единицы англоязычных стран (см. таблицу). В нашем пособии мы активно употребляем неметрические единицы измерения скорости и высоты, для остальных величин в основном приняты единицы измерения СИ.

Величина Единица СИ Неметрические единицы Формула пересчета
Наименование Обозначение Наименование Обозначение
Масса килограмм кг фунт lb [кг] ´ 2,2046 = [lb]
Скорость километр в час метр в секунду км/ч м/с узел миля в час фут в минуту kts n×mile/h ft/min [км/ч] / 1,852 = [kts] [км/ч] / 1,609 = [n×mile/h] [м/с] / 196,85 = [ft/min]
Длина Высота метр километр миллиметр м км мм фут морская миля дюйм ft n×mile in [м] / 0,3048 = [ft] [км] / 1,852 = [n×mile] [мм] / 25,4 = [in]
Объем литр л американский галлон   gal (US) [л] / 3,7854 = [gal (US)]
Температура градус Цельсия °C градус Фаренгейта °F [°C] ´ 1,8 + 32 = [°F] ([°F] – 32) / 1,8 = [°C]
Давление гектопаскаль миллибар бар гПа мбар бар дюйм ртутного столба фунт на квадратный дюйм   [гПа] = [мбар] [гПа] / 33,86 = [дюйм рт.ст.] [бар] ´ 14,504 = = [фунт/кв.дюйм]
Сила, вес ньютон Н фунт-сила   [H] ´ 0,2248 = [фунт-сила]
Частота вращения обороты в минуту об/мин (RPM)

Отличаются также и аббревиатуры, принятые для обозначения скоростей, поэтому для быстрой и удобной работы с пособием рекомендуем прежде всего внимательно ознакомиться с представленным ниже списком.

 

 

Аббревиатуры, используемые при рассмотрении
летных характеристик самолета

CAS – индикаторная воздушная скорость. Приборная воздушная скорость с учетом поправки на погрешность установки и инструментальную погрешность. Индикаторная воздушная скорость равна истинной воздушной скорости в стандартных атмосферных условиях (международная стандартная атмосфера, ISA) на среднем уровне моря.

IAS – приборная скорость по указателю воздушной скоpости.

KCAS – индикаторная воздушная скорость в узлах.

KIAS – приборная воздушная скорость в узлах.

TAS – истинная воздушная скорость. Скорость самолета относительно воздуха. Истинная воздушная скорость – это индикаторная воздушная скорость с учетом поправок на высоту и температуру воздуха.

VA – расчетная маневренная скорость. После превышения этой скорости запрещается полное или резкое перемещение рулевых поверхностей.

VFE – максимальная скорость полета с выпущенными закрылками. Запрещается превышение данной скорости при определенном положении закрылков.

VLO – максимальная скорость при выпуске/уборке шасси. Запрещается превышение данной скорости при выпуске или уборке шасси.

VLE – максимальная скорость полета при выпущенном шасси. Запрещается превышение данной скорости при выпущенном шасси.

VmCA – минимальная эволютивная скорость. Минимальная скорость, необходимая для сохранения управляемости самолета с одним неработающим двигателем.

VNE – непревышаемая скорость в спокойном воздухе. Превышение данной скорости запрещается вне зависимости от обстоятельств.

VNO – максимальная конструкционная крейсерская скорость. Превышение данной скорости допускается только в спокойном воздухе, при соблюдении должных мер предосторожности.

VS – скорость сваливания, или минимальная непрерывная скорость, при которой сохраняется управляемость самолета в определенной конфигурации.

VS 0 – скорость сваливания, или минимальная непрерывная скорость, при которой сохраняется управляемость самолета в посадочной конфигурации.

VS 1 – скорость сваливания, или минимальная непрерывная скорость, при которой сохраняется управляемость самолета с убранными закрылками и шасси.

VSSE минимальная эволютивная скорость при обучении. Минимальная скорость, необходимая в случае намеренного останова одного двигателя или при работе одного двигателя в режиме IDLE (при обучении).

Vx – скорость для набора высоты под наилучшим углом.

VY – скорость для набора высоты с наибольшей скороподъемностью.

VYSE – скорость для набора высоты с наибольшей скороподъемностью при одном неработающем двигателе.

VREF –минимальная (базовая) скорость пересечения торца ВПП.

Режимы работы двигателя: Положение шасси: Положение закрылков:

IDLE – малый газ, UP – убрано, APP – заход,

MAX – взлетный (максимальный), DOWN – выпущено. LDG – посадка,

NOM – номинальный. UP – убрано.

 

1. Геометрические и аэродинамические
характеристики самолета DA 42 Twin Star

1.1. Особенности конструктивно-аэродинамической
схемы самолета

Самолет DA 42 Twin Star компании Diamond – это высокотехнологичный и высокоэкономичный аппарат. Впервые макет нового двухмоторного самолета DA 42 Twin Star был представлен на международной авиационно-космической выставке в Берлине, где удивил всех эффективной аэродинамикой и высоким эксплуатационным ресурсом.

Планер самолета изготовлен из пластика, армированного углеволокном для большей прочности и легкости, что соответствует новым правилам, принятым Европейским ведомством авиационной безопасности. Элероны, рули высоты и направления, а также крыльевые закрылки выполнены из углеволокна и стекловолокна с применением многослойной технологии. Лопасти деревянно-композитные, повышенной прочности за счет покрытия из пластика и стальной кромки с нержавеющим покрытием.

Кресла, дополнительно усиленные кевларом, позволяют выдерживать нагрузку 26 g.

Самолет оборудован двумя винтовыми двигателями Centurion 1.7(2.0) (четырехцилиндровый двигатель прямого впрыска, жидкостного охлаждения с турбоохладителем и редукционной передачей винта 1:1,69). Каждый двигатель работает как на авиационном керосине, так и на дизельном топливе и развивает мощность 135 л. с. при 2300 об/мин. Цифровой электронный регулятор автоматически контролирует режимы работы двигателя, количество оборотов в минуту также регулируется автоматически. Два трехлопастных винта MTV-6 изменяемого шага оснащены системой поддержания постоянных оборотов и автоматическим флюгированием воздушного винта на случай, если двигатель откажет при более 1100 оборотов винта в минуту.

На самолете установлено ультрасовременное авиационное электронное оборудование Garmin 1000, кабина экипажа оборудована встроенными дисплеями.









Читайте также:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 160;


lektsia.info 2017 год. Все права принадлежат их авторам! Главная