Лекции.ИНФО


Реле. Классификация. Назначение.



Требования к релейной защите

К релейной защите предъявляются следующие требования по селективности, чувствительности, быстродействию и надежности:

1) Селективность действия (избирательность) – такое действие защиты, при котором она отключает только поврежденный элемент посредством его автоматических выключателей. Все другие части системы должны при этом оставаться включенными.

Все устройства релейной защиты делятся на 2 класса по селективности:

- защиты с относительной селективностью – селективность обеспечивается выбором параметров срабатывания. Сюда относятся максимальнотоковые и дистанционные защиты;

- защиты с абсолютной селективностью – селективность обеспечивается принципом действия – все виды дифференциальных защит.

2) Чувствительность – способность устройства релейной защиты реагировать на минимальные значения аварийных параметров.

Например, при возникновении повреждения на линиях высокого напряжения, работающих в режиме минимальных нагрузок и больших переходных сопротивлениях повреждения, токи короткого замыкания могут быть меньшими максимальных токов нагрузки. Это приводит к невозможности использования обычных токовых защит и заставляет переходить к более сложным и дорогим видам защит.

Чувствительность защит оценивается коэффициентом чувствительности. Для защит, реагирующих на возрастающие величины при возникновении повреждения (для токовых – ток): k = Iкзмин / Iср, где: Iкзмин - величина тока при металлическом коротком замыкании в защищаемой зоне; Iср - уставка по току срабатывания токовой защиты.

3) Быстродействие – определяется следующими соображениями:

- Ускорение отключения повреждения повышает устойчивость параллельной работы электрических машин в системе и, следовательно, устраняется одна из основных причин возникновения наиболее тяжелых системных аварий.

- Ускорение отключения повреждения уменьшает время работы потребителей при пониженном напряжении, что позволит остаться в работе электродвигателям как у потребителей, так и на собственных нуждах электростанций.

- Ускорение отключения повреждения уменьшает размер разрушений поврежденного элемента.

Поэтому для линий электропередачи 500 кВ быстродействие не должно быть хуже 20 мс, 750 кВ – 15 мс.

4) Надежность – способность устройства релейной защиты выполнять заданные функции защиты в течение заданного времени при заданных условиях эксплуатации.

 

Категорийность потребителей электроэнергии. Требования.

Электроприемники I категории - электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.

Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования.

Электроприемники II категории - электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники III категории - все остальные электроприемники, не подходящие под определения I и II категорий.

1.2.18. Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников I категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), специальные агрегаты бесперебойного питания, аккумуляторные батареи и т. п.

Если резервированием электроснабжения нельзя обеспечить необходимой непрерывности технологического процесса или если резервирование электроснабжения экономически нецелесообразно, должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.

Электроснабжение электроприемников I категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление рабочего режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимно резервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.

1.2.19. Электроприемники II категории рекомендуется обеспечивать электроэнергией от двух независимых взаимно резервирующих источников питания.

Для электроприемников II категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

Допускается питание электроприемников II категории по одной ВЛ, в том числе с кабельной вставкой, если обеспечена возможность проведения аварийного ремонта этой линии за время не более 1 сут. Кабельные вставки этой линии должны выполняться двумя кабелями, каждый из которых выбирается по наибольшему длительному току ВЛ. Допускается питание электроприемников II категории по одной кабельной линии, состоящей не менее чем из двух кабелей, присоединенных к одному общему аппарату.

При наличии централизованного резерва трансформаторов и возможности замены повредившегося трансформатора за время не более 1 сут. допускается питание электроприемников II категории от одного трансформатора.

1.2.20. Для электроприемников III категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 сут.5. Падение, потери и отклонения напряжения.

Отклонение напряжения — отличие фактического напряжения в установившемся режиме работы системы электроснабжения от его номинального значения. Отклонение напряжения в той или иной точке сети происходит под воздействием изменения нагрузки в соответствии с её графиком.

Потеря напряжения показывает, насколько напряжение в конце линии отличается от напряжения в ее начале. Падение напряжения обычно больше потери напряжения из-за сдвига по фазе векторов Ú1 и Ú2.

Падение напряжения — постепенное уменьшение напряжения вдоль проводника, по которому течёт электрический ток, обусловленное тем, что проводник обладает активным сопротивлением.

 

 

Вводы – это сложные проходные изоляторы больших габаритов, которые применяют для вывода проводов высокого напряжения из баков трансформаторов, масляных выключателей, а также для прокладки проводов через стены зданий.

Маслонаполненные вводы (Рис.1) имеют внешнюю и внутреннюю изоляцию. Внешняя изоляция состоит из верхней фарфоровой покрышки 4, находящейся во внешней атмосфере и герметично соединенный с нижней фарфоровой покрышкой 9 металлической соединительной втулкой 7 и кольцевыми прокладками 12 из маслостойкой резины.

В верхней части ввода расположен компенсатор давления 2, герметично соединенный с верхней фарфоровой покрышкой 4. У негерметичных вводов вместо компенсаторов давления имеется маслорасширитель. Компенсатор давления 2 служит для компенсации температурных изменений объема масла, находящегося внутри ввода. Внутри ввода проходит медная или латунная труба 3, соединяющая основные части ввода.

На трубе расположена внутренняя изоляция – изоляционный сердечник (остов) 5 ввода. Изоляционный сердечник 5 своим нижним выступом опирается на цилиндр 10 из бакелизированной бумаги и на гетинаксовую шайбу 11, лежащую на поверхности латунного стакана 13, навернутого на соединительную трубу 3 ввода. В нижней части ввода (Рис.4) между его тремя сочленяющимися частями проложены кольцевые прокладки 5 из маслостойкой резины. С их помощью достигается герметичность ввода. Все металлические детали в нижней части ввода закрыты алюминиевым экраном 8, позволяющим выровнять электрическое поле, снизив напряженности, действующие на масло в трансформаторе, в котором будет находиться нижняя часть ввода.

 

 

Падение, потери и отклонение напряжения. Таблица отклонения напряжений.

Падение напряжения — постепенное уменьшение напряжения вдоль проводника, по которому течёт электрический ток, обусловленное тем, что проводник обладает активным сопротивлением. Под падением напряжения также понимают величину на которую меняется потенциал при переходе из одной точки цепи в другую.

Потеря напряжения показывает, на сколько вольт напряжение в конце линии меньше, чем напряжение в ее начале.

Отклонение напряжения — отличие фактического напряжения в установившемся режиме работы системы электроснабжения от его номинального значения.

Отклонение напряжения в той или иной точке сети происходит под воздействием изменения нагрузки в соответствии с её графиком.

Таблица 10.3 – Влияние отклонения напряжения в пределах от -10 до +10% на характеристики асинхронных электродвигателей.

Пусковой и вращающий момент -19% +21%
Синхронная частота вращения const const
Скольжение +23% -17%
Частота вращения при номинальной нагрузке -1,5% +1%
КПД а) при номинальной нагрузке б) при нагрузке 75% в) при нагрузке 50%   -2% const от -1 до -2%   +1% const от -1 до +2%
при нагрузке: а) 100% б) 75% в) 50%   +1% от +2 до +3% от +4 до +5%   -3% -4% от -5 до -6%
Ток ротора при номинальной нагрузке +14% -11%
Ток статора при номинальной нагрузке +10% -7%
Пусковой ток от -10 до -12 % от +10 до +12%
Прирост t обмотки при номинальной нагрузке от +5 до +6 оС Практически без изменений

 

Методы расчета токов К.З.

56. Методы расчета токов К.З.

До 1кВ и свыше 1кВ

Метод типовых кривых: Суть метода состоит в применении специальных кривых, использующих зависимости изменения во времени отношения тока КЗ генератора в произвольный момент времени к начальному при различных удаленностях точки КЗ. Упомянутые кривые справедливы для турбогенераторов мощностью от 12,5 до 800 мВт, гидрогенераторов мощностью до 500 мВт и для всех крупных синхронных компенсаторов. Они включены в Руководящие указания по расчету коротких замыканий, выбору и проверке аппаратов и проводников по условиям короткого замыкания.

Ниже 1кВ: особенность расчета является необходимость учета сопротивления шин, ТТ, рубильника, автоматов и пр. Вызвано это тем, что суммарные величины сопротивлений цени кз в таких сетях очень малы и соизмеримы с сопротивлениями аппаратуры. Если не учитывать сопротивления аппаратуры, то токи могут быть сильно преувеличены. Необходима также учитывать активные сопротивления трансформаторов, питающие места кз. Сопротивления системы до вводов трансформатора обычно можно не учитывать т.е. считать, что Т питается от системы бесконечной мощности.

Свыше 1кВ: Расчеты токов КЗ производятся для выбора типов и параметров срабатывания (уставок) релейной защиты трансформатора напряжением 110/10 кВ, а также защит других элементов электрических сетей. В общем случае для выполнения защиты нужно знать фазные соотношения токов также, а при несимметричных КЗ за трансформатором - не только максимальные, но и возможные минимальные значения токов КЗ.

 

Выключатели нагрузки.

Выключатель нагрузки — высоковольтный коммутационный аппарат, занимающий по уровню допускаемых коммутационных токов промежуточное положение между разъединителем (коммутации под нагрузкой запрещены (как исключение допускается включение на холостой ход трансформаторов и линий — см. подробнее Разъединитель) и выключателем (масляным,вакуумным, воздушным, электромагнитным, элегазовым) который способен отключать без повреждения как номинальные нагрузочные токи так и сверхтоки при аварийных режимах. Выключатель нагрузки допускает коммутацию номинального тока, но не рассчитан на разрыв токов при к.з. Отключение сверхтоков в таких выключателях осуществляется специальными предохранителями. Выключатели нагрузки устанавливаются в распредустройствах и подстанциях 6-10 кВ и допускают коммутацию до нескольких МВА, в зависимости от конструкции и номинального тока.

Разновидности выключателей нагрузок

• Автогазовые

• Вакуумные

• Элегазовые

• Воздушные

• Электромагнитные

Поскольку они не рассчитаны на отключение тока короткого замыкания, функции автоматического отключения трансформаторов в случае их повреждения возлагают на плавкие предохранители либо на выключатели, принадлежащие предшествующим звеньям системы, например на линейные выключатели, расположенные ближе к источнику энергии.

 

ГАЗОВАЯ ЗАЩИТА

Газовая защита- Принцип действия и область применения. Газовая защита предназначена для защиты силовых трансформаторов с масляным заполнением, снабженных расширителями, от всех видов внутренних повреждений, сопровождающихся выделением газа, ускоренным перетеканием масла из бака в расширитель, а также от утечки масла из бака трансформатора.

Измерительным органом газовой защиты является газовое реле. Газовое реле представляет собой металлический сосуд с двумя поплавками (элементами), который врезается в наклонный трубопровод, связывающий бак трансформатора с расширителем. При нормальной работе трансформатора газовое реле заполнено трансформаторным маслом, поплавки находятся в поднятом положении и связанные с ними элек-трические контакты разомкнуты. При незначительном повреждении в трансформаторе (например, витковое замыкание) под воздействием местного нагрева из масла выделяются газы, которые поднимаются вверх, к крышке бака, а затем скапливаются в верхней части газового реле, вытесняя из него масло. При этом верхний из двух поплавков (элементов) опускается вместе с уровнем масла, что вызывает замыкание его контакта, а следовательно, предупредительный сиг-нал. При серьезном повреждении внутри трансформатора происходит бурное газообразование и под воз-действием выделившихся газов масло быстро вытесняется из бака в расширитель. Поток масла проходит через газовое реле и заставляет сработать нижний поплавок (элемент), который дает команду на отклю-чение поврежденного трансформатора. Этот элемент срабатывает также и в том случае, если в баке транс-форматора сильно понизился уровень масла, например при повреждении бака и утечке масла.

На панелях защит, выполненных на электромагнитных реле, установлены специальные указательные реле – «блинкеры», которые указывают на срабатывание той или иной защиты трансформатора. То есть при срабатывании газовой защиты «на сигнал», выпадает сигнал на соответствующем указательном реле

Короткозамыкатели

Короткозамыкатель — электрический аппарат, предназначенный для создания искусственного короткого замыкания на землю в сетях электроснабжения.

Короткозамыкатели совместно с отделителями применяются в упрощённых схемах подстанций вместо более дорогих силовых выключателей. Подобная замена позволяет экономить значительные денежные средства, так как стоимость силовых выключателей довольно высока. Устанавливаются короткозамыкатели: в сетях с заземлённой нейтралью — на одну фазу, в сетях с изолированной нейтралью — на две. Включение короткозамыкателя происходит автоматически, отключение производят вручную.

 

Отделители

Отделитель — высоковольтный аппарат, предназначенный для автоматического отключения повреждённых участков цепи в бестоковую паузу АПВ, поскольку его конструкция не рассчитана на гашение электрической дуги. Устройство отделителя такое же как и разъединителя. Отличие от последнего в том, что отделитель в комбинации с короткозамыкателем создаёт систему отделитель — короткозамыкатель которая представляет альтернативу высоковольтному выключателю.

Привод отделителя имеет также отключающий электромагнит 4, предназначенный для оперативного отключения отделителя помимо короткозамыкателя. Электромагнит 4 работает от независимого источника тока. [1]

Привод отделителя работает так же, как и общеизвестные ручные приводы масляных выключателей - КАМ, ПРБА и подобные. Устройств для гашения дуги отделитель не имеет и это является его основным, принципиальным недостатком: из-за этого ток, отключаемый отделителем, очень мал

За время бестоковой паузы АПВ отключается отделитель, который находится в паре с соответствующим сработавшим короткозамыкателем. Для исключения разрыва отделителя под током имеется специальная блокировка в виде трансформаторов тока в цепи короткозамыкателя на землю и исполнительного элемента (обычно электромагнита, препятствующего срыва собачки с защёлки). При повторной подаче питания от головного выключателя повреждённый участок цепи будет отключен отделителем.

 

Изоляторы

Лине́йный изоля́тор — устройство для подвешивания и изоляциипроводов и кабелей на опорах воздушной линии электропередачи (ВЛ) или воздушных линий связи (ВЛС).

Электрические изоляторы классифицируются по назначению, конструктивному исполнению, материалу изготовления, техническим характеристикам и условиям эксплуатации.

• Опорный.

• Для работы в помещениях — с гладкой поверхностью и ребристые.

• Для работы на открытом воздухе — штыревые, стержневые.

• Проходной.

• Для работы в помещениях — с токоведущими шинами (токопроводами), без токоведущих шин.

• Для работы на открытом воздухе — с нормальной и усиленной изоляцией.

• Высоковольтные вводы для работы на открытом воздухе — в герметичном и негерметичном исполнении.

• Линейный для работы на открытом воздухе — штыревой, тарельчатый, стержневой, орешковый, анкерный.

• Защитный — полый изолятор, предназначенный для использования в качестве изолирующей защитной оболочки электротехнического оборудования.

• Такелажный изолятор для установки между работающими на растяжение тросами оттяжек антенных мачт, подвесками контактной сети, проводами антенн.

Полимерные изоляторы изготавливают из специальных пластических масс.

• предназначен для изоляции и механического крепления токоведущих частей в электрических аппаратах и для монтажа токоведущих шин распределительных устройств электрических станций и подстанций.

• Наибольшей механической прочностью обладают полимерные (стеклопластиковые) изоляторы, что делает их применение, особенно при ультравысоких напряжениях, используемых в электроэнергетике, весьма перспективными. К числу преимуществ полимерных изоляторов также можно зачислить – высокую устойчивость к атмосферным загрязнениям, гидрофобность, простоту и удобство монтажа, высокую стойкость к перенапряжениям, высокая вандалоустойчивость, а также полимерные изоляторы обладают сниженным весом (более чем на 90%) по сравнению со стеклянными и фарфоровыми изоляторами.

• Однако наряду с преимуществами также преобладают и недостатки в эксплуатации полимерных изоляторов – технология их изготовления еще недостаточно стандартизирована и отсутствует общепринятая единая система производства, отсутствие материала, который бы в достаточной мере удовлетворил требованиям, предъявляемым к нему, а также практически отсутствует опыт длительной эксплуатации данного вида изолятора.

 

Защита эл. Сетей до 1000 В

Защите от перегрузок подлежат следующие сети:

внутри помещений, выполненные проложенными открыто незащищенными изолированными проводами или проводами с горючей оболочкой;

внутри помещений, выполненные защищенными проводами, проложенными в трубах, несгораемых строительных конструкциях и т.п.;

сети освещения общественных и торговых помещений, служебно-бытовых помещений промышленных предприятий, включая сети для бытовых и переносных электроприемников, а также пожароопасных производственных помещений;

силовые сети на промышленных предприятиях, в жилых и общественных зданиях, торговых помещениях, когда по условиям технологического процесса или режима работы сетей может возникать их длительная перегрузка;

сети всех видов во взрывоопасных наружных установках независимо от условий технологического процесса или режима работы сетей.

Основными аппаратами защиты сетей напряжением 380...660 В являются предохранители с плавкими вставками и автоматические воздушные выключатели. От них требуются кратчайшее время отключения и обеспечение селективности. Номинальные токи плавких вставок предохранителей и токи срабатывания расцепителей автоматических выключателей должны быть минимально возможными, но не приводящими к отключению цепи при пуске электродвигателей и кратковременных перегрузках.

 

 

КЗ в эл. установках

Коро́ткое замыка́ние (КЗ) — электрическое соединение двух точек электрической цепи с различными значениямипотенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.

В трёхфазных электрических сетях различают следующие виды коротких замыканий

однофазное (замыкание фазы на землю или нейтральный провод);

двухфазное (замыкание двух фаз между собой);

двухфазное на землю (две фазы между собой и одновременно на землю);

трёхфазное (три фазы между собой)

В электрических машинах возможны короткие замыкания:

межвитковые — замыкание между собой витков обмоток ротора или статора, либо витков обмоток трансформаторов;

замыкание обмотки на металлический корпус.

Причины КЗ:

1. старение изоляции,

2. перенапряжение,

3. прямые удары молнии,

4. механические повреждения,

5. набросы посторонних предметов на токоведущие части,

6. неудовлетворительный уход за электрическим оборудованием,

7. ошибочные действия персонала.

 

 

Требования к релейной защите

К релейной защите предъявляются следующие требования по селективности, чувствительности, быстродействию и надежности:

1) Селективность действия (избирательность) – такое действие защиты, при котором она отключает только поврежденный элемент посредством его автоматических выключателей. Все другие части системы должны при этом оставаться включенными.

Все устройства релейной защиты делятся на 2 класса по селективности:

- защиты с относительной селективностью – селективность обеспечивается выбором параметров срабатывания. Сюда относятся максимальнотоковые и дистанционные защиты;

- защиты с абсолютной селективностью – селективность обеспечивается принципом действия – все виды дифференциальных защит.

2) Чувствительность – способность устройства релейной защиты реагировать на минимальные значения аварийных параметров.

Например, при возникновении повреждения на линиях высокого напряжения, работающих в режиме минимальных нагрузок и больших переходных сопротивлениях повреждения, токи короткого замыкания могут быть меньшими максимальных токов нагрузки. Это приводит к невозможности использования обычных токовых защит и заставляет переходить к более сложным и дорогим видам защит.

Чувствительность защит оценивается коэффициентом чувствительности. Для защит, реагирующих на возрастающие величины при возникновении повреждения (для токовых – ток): k = Iкзмин / Iср, где: Iкзмин - величина тока при металлическом коротком замыкании в защищаемой зоне; Iср - уставка по току срабатывания токовой защиты.

3) Быстродействие – определяется следующими соображениями:

- Ускорение отключения повреждения повышает устойчивость параллельной работы электрических машин в системе и, следовательно, устраняется одна из основных причин возникновения наиболее тяжелых системных аварий.

- Ускорение отключения повреждения уменьшает время работы потребителей при пониженном напряжении, что позволит остаться в работе электродвигателям как у потребителей, так и на собственных нуждах электростанций.

- Ускорение отключения повреждения уменьшает размер разрушений поврежденного элемента.

Поэтому для линий электропередачи 500 кВ быстродействие не должно быть хуже 20 мс, 750 кВ – 15 мс.

4) Надежность – способность устройства релейной защиты выполнять заданные функции защиты в течение заданного времени при заданных условиях эксплуатации.

 

Категорийность потребителей электроэнергии. Требования.

Электроприемники I категории - электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.

Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования.

Электроприемники II категории - электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники III категории - все остальные электроприемники, не подходящие под определения I и II категорий.

1.2.18. Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников I категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), специальные агрегаты бесперебойного питания, аккумуляторные батареи и т. п.

Если резервированием электроснабжения нельзя обеспечить необходимой непрерывности технологического процесса или если резервирование электроснабжения экономически нецелесообразно, должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.

Электроснабжение электроприемников I категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление рабочего режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимно резервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.

1.2.19. Электроприемники II категории рекомендуется обеспечивать электроэнергией от двух независимых взаимно резервирующих источников питания.

Для электроприемников II категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

Допускается питание электроприемников II категории по одной ВЛ, в том числе с кабельной вставкой, если обеспечена возможность проведения аварийного ремонта этой линии за время не более 1 сут. Кабельные вставки этой линии должны выполняться двумя кабелями, каждый из которых выбирается по наибольшему длительному току ВЛ. Допускается питание электроприемников II категории по одной кабельной линии, состоящей не менее чем из двух кабелей, присоединенных к одному общему аппарату.

При наличии централизованного резерва трансформаторов и возможности замены повредившегося трансформатора за время не более 1 сут. допускается питание электроприемников II категории от одного трансформатора.

1.2.20. Для электроприемников III категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 сут.5. Падение, потери и отклонения напряжения.

Отклонение напряжения — отличие фактического напряжения в установившемся режиме работы системы электроснабжения от его номинального значения. Отклонение напряжения в той или иной точке сети происходит под воздействием изменения нагрузки в соответствии с её графиком.

Потеря напряжения показывает, насколько напряжение в конце линии отличается от напряжения в ее начале. Падение напряжения обычно больше потери напряжения из-за сдвига по фазе векторов Ú1 и Ú2.

Падение напряжения — постепенное уменьшение напряжения вдоль проводника, по которому течёт электрический ток, обусловленное тем, что проводник обладает активным сопротивлением.

 

 

Реле. Классификация. Назначение.

Реле — электрическое или электронное устройство (ключ), предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных воздействий.

Классификация реле:

По функциональным признакам различают: реле времени, тока, напряжения, мощности, промежуточные, сигнальные

По признаку устройства реле делят на реле электро­магнитные, электромеханические, магнитоуправляемые (гермети­зированные магнитоуправляемые контакты или герконы), элект­ронные, элетронно-электромагнитные или комбинированные.

По признаку рода тока различают реле переменного и постоянного токов.

Электромагнитные реле состоят из магнитной системы с катушкой, расположенной на ее неподвижной части, якоря, механически связанного с замыкающими или размыкающими контактами. При включении катушки на напряжение якорь притягивается и воздействует на контакты, заставляя их замы­каться или размыкаться.

В электромеханических реле источником движения является небольшой исполнительный двигатель, связанный че­рез редуктор с группами контактов. При включении двигателя редуктор приводит во вращение барабан с расположенными на них подвижными контактами, которые и обеспечивают по определенной программе замыкание или размыкание со­ответствующих контактов.

Герконы (герметизированные магнитоуправляемые кон­такты) представляют собой, как правило, запаянные в герме­тизированный баллон контакты, которые могут замыкаться или размыкаться под воздействием внешнего магнитного поля.

Электронные реле являются бесконтактными устрой­ствами и представляют собой электронные схемы, в которых роль контактов выполняют полупроводниковые приборы: ра­ботающие в ключевом режиме транзисторы, тиристоры и др.

Комбинированные реле — это совокупность электрон­ной схемы управления и электромагнитного или электромеха­нического реле в качестве исполнительного элемента.

Рис. 1. Схема защиты с одним реле, включенным на разность токов Рис. 2. Схема защиты с двумя реле, включенными на фазные токи

 

 









Читайте также:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 162;


lektsia.info 2017 год. Все права принадлежат их авторам! Главная