Различие свойств нефти в пределах нефтеносной залежи
Лекции.ИНФО


Различие свойств нефти в пределах нефтеносной залежи



Физические свойства и состав нефти в пределах одного и того же продуктивного пласта не всегда остаются постоянными (Рис.2.8).

Изменения свойств нефти в залежи зависят от многих факторов: генезиса пластовых флюидов, глубины залегания пласта, термобарического режима и других факторов.

В сводовой части залежи всегда больше газа. Состав газа в куполе складки имеет больше азота, метана, этана, пропана приблизительно на 2 %, чем в крыльях. Распределение тяжёлых углеводородов газа увеличивается от свода к крыльям залежи. Бутановых углеводородов больше находится в крыльях.

Давление насыщения нефти газом и количество растворенного газа в единице объёма нефти уменьшается по направлению к водонефтяному контакту, а, следовательно, и объёмный коэффициент нефти уменьшается к крыльям складки.

В залежах, не имеющих выхода на поверхность и окруженных краевыми водами, плотность нефти и количество смол увеличиваются с глубиной залегания. Изменение этих величин в залежи происходит за счёт гравитационного распределения.

Кроме того, в залежи величина плотности нефти возрастает от купола к крыльям и к подошве, что частично объясняется функцией распределения растворенного в ней газа. Ближе к зонам водонефтяного контакта происходят окислительные процессы, что сказывается на увеличении плотности нефти в приконтурных зонах.

Рис.2.8

Вязкость нефти увеличивается от купола свода к крыльям и к зоне водонефтяного контакта. К зонам водонефтяного контакта вязкостные характеристики пластовой нефти возрастают за счёт гравитационного перераспределения высокомолекулярных компонентов нефти и диспергирования их в переходную зону на границе водонефтяного контакта.

Каждая залежь имеет свой комплекс причин изменения свойств нефти по пласту (табл. 2.1) и на стадии исследования процессов разработки их необходимо изучать. Причины изменения свойств нефти по площади месторождения весьма разнообразны. Геологические и структурные особенности строения залежи, наличие выходов пласта на поверхность, химические, бактериологические, физико-химические и другие процессы, происходящие в пласте, прямо или косвенно влияют на состав и свойства нефтей.

Таблица 2.1

Различие свойств нефти в пределах пласта Д1 Туймазы

Показатели Номера скважин
Центральная часть залежи Приконтурная зона
Давление насыщения, МПа 9,67 9,63 9,63 8,81 0,58 0,37 0,09
Плотность пластовой нефти при Р = 17,5 МПа и Т = 30 °С, кг/м3
Плотность дегазиро­ванной нефти, кг/м3
Усадка, % объёмный 13,5 13,6 13,9 12,5 13,0 11,7 10,6
Газовый фактор после се­парации при Т=20 °С, м33 54,0 53,3 51,6 46,6 49,0 43,6 41,3
Объемный коэффи­циент при Р = 17,5 МПа и Т = 30 °С 1,161 1,16 1,152 1,142 1,499 1,13 1,119

 

Одним из методов исследования изменения свойств нефти по залежи является фотоколориметрия. В основе метода лежит способность раствора поглощать световой поток. Степень поглощения светового потока (Ксп) зависит от содержания и концентрации окрашенных веществ, представленных смолами и асфальтенами и другими полярными соединениями. Вместе с изменением содержания полярных компонентов в нефти изменяются её вязкость, плотность и другие свойства. Поэтому по изменению величины коэффициента светопоглощения (Ксп) можно судить и об изменении других показателей нефти.

Зная начальное распределение свойств нефти по залежи и динамику изменения состава и свойств нефти, добываемых из скважин, можно, например, судить о направлениях движения нефти в пласте, устанавливать взаимосвязи нефтяных и нагнетательных скважин многопластовой залежи, оценивать продуктивность отдельных пропластков.

 

 

Лекция 6

 

СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПРИРОДНЫХ ГАЗОВ

Природные газы – это вещества, которые при нормальных (н.у.) и стандартных (с.у.) условиях являются газообразными. В зависимости от условий газы могут находиться в свободном, адсорбированном или растворённом состояниях.

В пластовых условиях газы в зависимости от их состава, давления и температуры (термобарического режима в пласте) могут находиться в различных агрегатных состояниях – газообразном, жидком, в виде газожидкостных смесей.

Свободный газ обычно расположен в повышенной части пласта и находится в газовой шапке. Если газовая шапка в нефтяной залежи отсутствует, то весь газ залежи растворён в нефти.

Давление, при котором имеющийся в залежи газ начинает выделяться из нефти, называется давлением насыщения. Давление насыщения нефти газом в пластовых условиях определяется составами, количеством нефти и газа, пластовой температурой.

Растворённый газ, по мере снижения давления при добыче, выделяется из нефти. Он называться попутным газом. В пластовых условиях все нефти содержат растворённый газ. Чем выше давление в пласте, тем больше газа может быть растворено в нефти. В 1 м3 нефти содержание растворённого газа может достигать 1000 м3.

 

Состав природных газов

Природные газы, добываемые из газовых, газоконденсатных и нефтяных месторождений, состоят из углеводородов (УВ) метанового ряда СН4–С4Н10: метана, этана, пропана, изобутана и н-бутана, а также неуглеводородных компонентов: H2S, N2, CO, CO2, H2, Ar, He, Kr, Xe и других.

При нормальных и стандартных условиях термодинамически в газообразном состоянии существуют только УВ состава С1–С4. Углеводороды алканового ряда, начиная с пентана и выше, при этих условиях находятся в жидком состоянии, температуры кипения для изо-С5 равна 28оС, а для н-С5 → 36оС. Однако, в попутных газах иногда наблюдаются углеводороды С5 за счёт термобарических условий, фазовых переходов и других явлений.

Качественный состав газов нефтяного происхождения всегда одинаков (что нельзя сказать о газах вулканических извержений). Количественное распределение компонентов практически всегда различно.

Состав газовых смесей выражается в виде массовойилиобъемной концентрации компонентовв процентахи мольных долях.

, (2.15)

где Wi - масса i-го компонента; ΣWi - суммарная масса смеси.

, (2.16)

где Vi - объем i-го компонента в смеси; Σ Vi - суммарный объем газа.

, (2.17)

где ni - число молей i-го компонента в смеси; Σпi - суммарное число молей газа в системе.

Зависимость между объемной и мольной концентрациями компонентов вытекает из закона Авогадро. Так как равные объемы любых газов при одинаковых температуре и давлении содержат одинаковое число молекул, то объем i-го компонента смеси будет пропорционален числу молей i-го компонента:

, (2.18)

где К — коэффициент пропорциональности. Следовательно

, (2.19)

т. е. концентрация компонента в процентах по молям (% мол.) в смеси газов при атмосферном давлении практически совпадает с объемной концентрацией этого компонента в процентах (% об.).

При высоких давлениях жидкие углеводороды растворяются в газовой фазе (газовые растворы, газоконденсаты). Поэтому при высоких давлениях плотность газа может приближаться к плотности легких углеводородных жидкостей.

В зависимости от преобладания в нефтяных газах легких (метан, этан) или тяжелых (пропан и выше) углеводородов газы разделяются на сухие и жирные.

Сухимгазом называют природный газ, который не содержит тяжелых углеводородов или содержит их в незначительных количествах.

Жирным газом называют газ, содержащий тяжелые углеводороды в таких количествах, когда из него целесообразно получать сжиженные газы или газовые бензины.

На практике принято считать жирным газом такой, в 1 м3 которого содержится более 60г газового бензина.

Газы, добываемые из чисто газовых месторождений, содержат более 95 % метана (табл. 2.2) и представляют собой, так называемые, сухие газы.

Таблица 2.2

Месторождение СН4 С2Н6 С3Н8 С4Н10 N2 СО2 Относит. плотность
Северо-Ставропольское 98,9 0,29 0,16 0,05 0,4 0,2 0,56
Уренгойское 98,84 0,1 0,03 0,03 1,7 0,3 0,56
Шатлыкское 95,58 1,99 0,35 0,15 0,78 1,15 0,58
Медвежье 98,78 0,1 0,02 1,0 0,1 0,56
Заполярное 98,6 0,17 0,02 0,013 1,1 0,18 0,56

 

Тяжёлым нефтям свойственны сухиепопутные газы с преобладанием метана в их составе. Например, содержание метана в составе попутного газа Русского месторождения Западной Сибири (плотность нефти более 920 кг/м3) аналогично содержанию метана в составе газа газового Уренгойского месторождения и составляет около 98,8 об. %.

Содержание метана в газах газоконденсатных месторождений колеблется в интервале 75–95 % (табл. 2.3). Попутный газ газоконденсатных месторождений и лёгких нефтей достаточно жирный.

Таблица 2.3

Месторождение СН4 С2Н6 С3Н8 С4Н10 С5Н12 N2 СО2 Отност. плотность  
Вуктыльское 74,80 8,70 3,90 1,80 6,40 4,30 0,10 0,882
Оренбургское 84,00 5,00 1,60 0,70 1,80 3,5 0,5 0,680
Ямбургское 89,67 4,39 1,64 0,74 2,36 0,26 0,94 0,713
Уренгойское (БУ–8, БУ–14) 88,28 5,29 2,42 1,00 2,52 0,48 0,01 0,707

 

Газы, добываемые вместе с нефтью из нефтяных месторождений (попутные газы) представляют собой смесь метана, этана, пропан-бутановой фракции, газового бензина. При повышенном давлении углеводороды состава С3, С4 легко сжижаются. В пластовых условиях в газообразном состоянии находится практически один метан. При нормальных условиях углеводороды от метана СН4 до бутана С4Н10 находятся в газообразном состоянии. Остальные углеводороды при этих условиях — жидкости. Пропан и бутан при повышении давления легко переходят в жидкое состояние. Упругость насыщенных паров углеводородов, т. е. то давление, при котором газ начинает конденсироваться и переходить в жидкое состояние, повышается с ростом температуры и она тем выше, чем ниже плотность углеводорода. Упругость пара — нелинейная функция температуры. Графики на рис. 2.9 построены так, чтобы получить линейную зависимость между упругостью паров углеводородов и температурой: шкала упругости пара принята логарифмической, а температурная шкала (в °С) принята произвольной.

Рис.2.9

Удобство таких графиков заключается в том, что они позволяют легко и быстро определять по известной упругости пара при некоторой температуре упругость его паров при других температурах. Для этого проводят прямую линию через, известную точку и общую точку пересечения прямых упругостей паров (находящуюся вне графика на продолжении правой верхней части диаграммы).

Из рис. 2.9 следует, что давление паров метана наибольшее; при нормальных условиях его нельзя превратить в жидкость (пунктирная линия 1 давления ненасыщенного пара метана), так как его критическая температура t = -82,95° С. Давление насыщенных паров других углеводородов намного ниже. Например, бутан при t = - 20° С имеет упругость паров, равную 0,22 Мн/м2 (2,2 кГ/см2).

К расчёту физико-химических свойств газа как многокомпонентной смеси можно применять принцип аддитивности.

Аддитивный подход к расчёту физико-химических и технологических параметров означает, что каждый компонент газа в смеси ведёт себя так, как если бы он в данной смеси был один.

Следовательно, для оценки макроскопических свойств нефтяного газа (при н.у. и с.у.) применимы аддитивные методы расчётов физико-химических и технологических параметров (Псмеси):

, (2.20)

где где Ni – мольная доля; gi – весовая доля; Vi – объёмная доля; Пi – физико-химическое свойство i-го компонента.

Для идеальных газов общее давление в системе (смеси газов) равно сумме парциальных давлений компонентов (закон Дальтона):

, (2.21)

где Р – общее давление смеси газов; рi – парциальное давление i-го компонента в смеси. Откуда

, (2.22)

. (2.23)

То есть, парциальное давление компонента в газовой смеси равно произведению его молярной доли на общее давление смеси газов.

Аддитивность парциальных объёмов (Vi) компонентов газовой смеси выражается законом Амага:

, (2.24)

где V – общий объём смеси газов; Vi – мольный объём i-го компонента газа в смеси.

По аналогии с уравнениями (2.22–2.23) мольный объём компонента в газе можно оценить:

. (2.25)

Как аддитивные величины рассчитывают все физико-химические свойства газа, например, плотность смеси газов:

, (2.26)

где ρi – плотность i–го компонента; Ni – мольная доля i–го компонента.

 









Читайте также:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 145;


lektsia.info 2017 год. Все права принадлежат их авторам! Главная