Лекции.ИНФО


Основные элементы системы радиосвязи



Характеристики сигналов связи

Сообщения и соответствующие им сигналы по своей структуре могут быть непрерывными или дискретными.

Непрерывные сигналы определяются бесконечным множеством значений на конечном интервале времени. Такие сигналы описываются на некотором достаточно большом интервале времени непрерывными функциями времени. Типичным примером непрерывного сигнала может служить телефонный сигнал, отображающий речь, музыку, изменение температуры и т. д. (рис. 1.2).

Дискретными называются сигналы, характеризующиеся конечным числом значений на интервале времени их существования. Примером дискретного сигнала могут служить сигналы телеграфной связи, отображающие буквы алфавита и знаки определенными сочетаниями дискретных состояний сигнала (рис. 1.3).

Рис. 1.2. Телефонный сигнал Рис. 1.3. Телеграфные сигналы

 

Следует отметить, что и любой непрерывный сигнал для передачи сообщения с определенной точностью можно дискретизировать. Эта возможность основана на том, что все реальные сигналы имеют ограниченные спектры частот, т. е. описываются функциями с конечным множеством значений на конечном интервале времени.

Функции, описывающие сигналы связи, могут быть периодическими и непериодическими функциями времени. Из курса теории радиосигналов известно [1], что сигнал (функция) любого вида может быть разложен на гармонические составляющие: периодические сигналы – с помощью рядов Фурье, непериодические – с помощью интеграла Фурье.

Совокупность амплитуд гармонических составляющих называется спектром амплитуд или просто спектром сигнала.

Для анализа сигналов удобнее пользоваться не полными аналитическими описаниями сигналов (полная реализация которых не всегда возможна), а некоторыми обобщенными показателями или параметрами.

Такими обобщенными физическими параметрами сигнала являются:

– длительность сигнала ТС;

–ширина спектра частот ;

– динамический диапазон DC;

Длительность ТСхарактеризует время существования сигнала и, следовательно, время, на которое необходимо предоставить канал связи для передачи сигнала.

Ширина спектра частот характеризует форму сигнала и полосу пропускания канала, которую необходимо иметь для передачи сигнала по каналу.

Динамический диапазон сигнала Д характеризует превышение мощности сигнала PC над мощностью соответствующих сигналу помех PП, записанное в логарифмической форме:

Более точно динамическим диапазоном сигнала следует считать логарифм отношения его наибольшей мгновенной мощности и наименьшей мгновенной мощности. Но так как в канале связи минимальная мощность сигнала всегда должна превышать мощность помех, то в качестве обобщенного параметра выбрано превышение сигнала над помехой.

Виды модуляции

Виды модуляции

Передача первичных сигналов связи в исходном виде осуществляется только по проводным линиям небольшой протяженности. При организации дальней проводной и радиосвязи необходимо пользоваться специальным переносчиком - вспомогательным высокочастотным (обычно гармоническим) колебанием, с помощью которого первичные сигналы преобразуются в радиосигналы. Процесс преобразования непрерывных первичных сигналов в радиосигналы называют модуляцией, а дискретных первичных сигналов – манипуляцией.

Модуляцией (манипуляцией) называется процесс взаимодействия двух колебаний (НЧ и ВЧ), при котором изменяется один или несколько параметров высокочастотного колебания (амплитуда, частота, фаза) по закону первичного низкочастотного колебания.

В зависимости от того, какой из параметров изменяется под воздействием модулирующего сигнала, различают три основных вида модуляции: амплитудную (АМ), частотную (ЧМ) и фазовую (ФМ).

Указанными видами модуляции не исчерпываются технические возможности передачи сообщений по радиоканалам. Например, в технике радиорелейной, тропосферной и спутниковой связи широко применяются различные виды импульсной модуляции, при которых параметры периодической последовательности коротких импульсов (амплитуда, длительность, частота следования) изменяются по закону модулирующего колебания.

В технике военной радиосвязи для передачи непрерывных сообщений широко используются амплитудная, однополосная и частотная модуляции. Для передачи дискретных сообщений находят применение амплитудная, частотная и фазовая манипуляции.

Амплитудная модуляция

При амплитудной модуляции амплитуда несущего колебания изменяется в соответствии с изменением мгновенного значения модулирующего сигнала. На рис. 1.5 представлены формы модулирующего, модулируемого и амплитудно-модулированных сигналов.

Для простоты анализа в качестве модулирующего первичного сигнала взято гармоническое колебание низкой частоты W. В качестве модулируемого колебания взято высокочастотное колебание несущей частоты w. Амплитудно-модулированное (АМ) колебание представляет собой высокочастотное колебание, амплитуда которого изменяется по закону изменения напряжения низкой частоты.

Степень воздействия модулирующего колебания на колебание несущей частоты оценивается коэффициентом (глубиной) амплитудной модуляции, который определяется выражением

,

где – амплитуда несущего высокочастотного колебания;

– превышение амплитуды АМ колебания над амплитудой несущего колебания.

Рис. 1.5. Принцип амплитудной модуляции

 

Амплитудно-модулированное колебание является сложным и не является простой суммой колебаний высокой и низкой частот. Покажем это.

Пусть колебания высокой и низкой частот являются гармоническими и определяются выражениями:

,

.

В процессе модуляции амплитуда напряжения ВЧ сигнала изменяется по закону низкочастотного сигнала:

.

Тогда мгновенное значение модулированного напряжения можно записать в виде

Применив тригонометрическую формулу

,

получим:

. (1)

Полученный результат показывает, что АМ колебание представляет собой сумму трех высокочастотных колебаний, имеющих частоты , и , и не содержит в себе низкой частоты W полезного сигнала.

Частоты и называются соответственно верхней и нижней боковыми частотами. Амплитуды колебаний боковых частот не превышают половины (при т = 1) амплитуды несущей частоты. Спектральный состав амплитудно-модулированного колебания показан на рис. 1.6.

Рис. 1.6. Спектр АМ сигнала

 

Выше был рассмотрен спектр модулированного сигнала, когда в качестве первичного сигнала принималось простое гармоническое колебание. Реальные сигналы различных видов связи (телефонных и телеграфных) являются сложными и в частотном спектре занимают определенную полосу.

Как правило, передаваемый сигнал не является гармоническим и состоит из большого количества синусоидальных колебаний с разными амплитудами и частотами:

.

Поэтому и в структуре модулированного сигнала вместо боковых частот появятся боковые полосы. Очевидно, что спектр АМ сигнала в этом случае будет иметь в своем составе несущую частоту со и две боковых полосы частот: верхнюю , и нижнюю , (рис. 1.7).

Рис. 1.7. Структура спектра телефонного АМ сигнала

 

Ширина полосы частот АМ телефонного сигнала может быть определена как разность между наибольшей верхней боковой частотой и наименьшей нижней боковой частотой:

,

т. е. ширина полосы АМ телефонного сигнала вдвое больше наивысшей частоты спектра первичного сигнала звуковой частоты. Считая FB = 3400 Гц, получим ширину спектра, равную DFc = 6800 Гц.

Колебание несущей частоты имеет постоянную амплитуду и не содержит в себе полезного сигнала. Передавать это колебание, в принципе, не обязательно. Несущая частота нужна в приемнике лишь для того, чтобы восстановить форму первичного сигнала. Полная информация о передаваемом сигнале заключена в равной степени в каждой из боковых полос частот.

Таким образом, недостатками амплитудной модуляции являются:

1. Широкая занимаемая полоса частот: она вдвое превышает ширину спектра передаваемого сигнала. Уменьшение полосы частот позволило бы увеличить количество каналов (рабочих частот) в пределах данного диапазона.

2. Нерациональное использование мощности передатчика. Действительно, амплитуда колебаний боковой частоты определяется выражением

,

где m - коэффициент амплитудной модуляции.

Несложно показать, что отношение между мощностями колебаний несущей и боковой частот будет равно

.

Поскольку m 1, то мощность, затрачиваемая на излучение колебаний несущей частоты, значительно превышает полезную мощность, затрачиваемую на излучение колебаний боковых частот. Реально на передачу полезной информации расходуется около 10 % мощности передатчика [2].

Недостатки, свойственные амплитудной модуляции, устраняются при переходе к так называемой однополосной модуляции.

Однополосная модуляция

Вид модуляции, при которой в спектре АМ сигнала сохраняется лишь одна боковая полоса, называется однополосной модуляцией (ОМ), а само колебание называется однополосно-модулированным сигналом.

Из анализа выражения (1) следует, что однополосная модуляция является особым видом амплитудно-частотной (фазовой) модуляции, при которой амплитуда высокочастотного колебания изменяется по закону изменения мгновенных амплитуд модулирующего сигнала (первичного электрического сигнала), а изменение частоты (фазы) происходит в соответствии с законом изменения мгновенной частоты модулирующего сигнала.

В настоящее время при работе в телефонном режиме на частотах до 20...30 МГц однополосная модуляция является основным видом управления колебаниями в радиопередатчиках.

Однополосная модуляция (ОМ) имеет ряд неоспоримых преимуществ по сравнению с применявшейся ранее амплитудной модуляцией (АМ).

Во-первых, ширина спектра сигнала при ОМ сокращается вдвое по сравнению со спектром сигнала при АМ, что позволяет в два раза увеличить число рабочих частот в одном и том же диапазоне и уменьшить вдвое мощность шума на выходе радиоприемника, что в свою очередь приводит к улучшению помехозащищенности канала связи.

Во-вторых, при однополосной модуляции повышается эффективность использования мощности передатчика, так как отпадает необходимость затраты электроэнергии на генерирование мощных колебаний несущей частоты. При заданной мощности передатчика это эквивалентно увеличению дальности связи. Переход от АМ к ОМ обеспечивает общий энергетический выигрыш примерно в 8 раз [3].

Еще одним достоинством однополосной модуляции является более высокий промышленный КПД, поскольку в паузах передачи информации несущая не генерируется и, следовательно, снижается потребление энергии от источников питания. Чем мощнее передатчик, тем больше выигрыш в потреблении энергии. Так, например, расход электроэнергии при АМ составляет 3,5...4,5 кВт на 1 кВт полезной мощности, а при ОМ – всего от 1,1 до 2 кВт.

Наряду с достоинствами однополосной модуляции следует отметить некоторые трудности ее технической реализации.

Для демодуляции однополосного сигнала в приемном устройстве на детектор (демодулятор) приемника необходимо подать колебание несущей частоты. В противном случае информация о частоте первичного сигнала будет потеряна. Источником колебания восстановленной несущей является специальный гетеродин, причем частота этой несущей должна быть восстановлена с высокой степенью точности ( 25 Гц).

Вторая трудность внедрения однополосных сигналов в практику связана с необходимостью подавления несущей и второй боковой полосы частот в тракте передачи.

Существует несколько способов формирования однополосных радиосигналов: фильтровый, фазофильтровый, фазокомпенсационный, синтетический и др. В настоящее время широкое применение находит фильтровый способ, который предполагает выделение с помощью фильтров одной из боковых полос амплитудно-модулированного сигнала.

Несмотря на указанные технические трудности, однополосная модуляция нашла широкое применение в коротковолновой военной радиосвязи.

Частотная модуляция

При частотной модуляции (ЧМ или РЗ) амплитуда модулированного несущего колебания остается неизменной, а меняется только его частота в соответствии с изменением амплитуды первичного сигнала. На рис. 1.8 показаны формы исходного (модулирующего) и частотно-модулированного сигналов.

Максимальное отклонение частоты от среднего значения несущей называется девиацией частоты:

,

или .

Отношение

называется индексом частотной модуляции. Здесь W, (F) – частота первичного сигнала.

 

Рис. 1.8. Принцип частотной модуляции

 

Также как АМ колебание, частотно-модулированное колебание является сложным. Разложение ЧМ сигнала на гармонические составляющие требует достаточно сложных математических преобразований с использованием функции Бесселя.

Выполнение этих преобразований показывает, что спектр колебания при частотной модуляции состоит из колебаний с частотами w0 (f0) и бесконечного числа боковых частот, расположенных попарно симметрично относительно несущей частоты w0 и отличающихся от последней на nW, где n - любое целое число.

Амплитуды боковых составляющих определяются выражением

,

где – амплитуда ВЧ колебания;

– функция Бесселя n-го порядка от аргумента .

Пример спектра ЧМ сигнала показан на рис. 1.9.

Рис. 1.9. Спектр ЧМ сигнала

 

По величине индекса частотной модуляции различают:

– узкополосную ЧМ, когда < 1, т.е. < F;

– широкополосную ЧМ, когда >1, т.е. > F;.

Теоретически спектр ЧМ колебаний бесконечно широк. Практически, начиная с некоторых частот, амплитуды гармоник столь малы, что ими можно пренебречь. На этом основании ширина спектра ЧМ колебаний определяется как диапазон частот, расположенный симметрично относительно несущей, за пределами которого нет гармоник с амплитудами, превосходящими 0,01 .

Приближенно ширина спектра определяется формулой

(2)

Например, при девиации частоты = 5 кГц и наивысшей частоте спектра звукового сигнала F = 3,4 кГц, принятых для военной радиосвязи, ширина спектра ЧМ сигнала составит DFC » 2(5+3,4)=16,8 кГц.

При большом индексе частотной модуляции, когда >>1, формула (2) принимает вид

,

т. е. ширина спектра практически равна удвоенной девиации частоты.

При малом индексе частотной модуляции << 1ширина спектра будет равна

,

т. е. составит такую же величину, как и при амплитудной модуляции.

В технике радиосвязи при работе в телефонном режиме на частотах выше 20...30 МГц частотная модуляция нашла широкое применение, а в УКВ радиостанциях малой мощности (до 100 Вт) она является основным видом модуляции. Сигналы при ЧМ имеют более широкий спектр, чем при ОМ, но это обстоятельство при большой частотной емкости диапазона не является решающим при выборе вида модуляции. Кроме того, аппаратура, где применяется только частотная модуляция, значительно упрощается, что очень важно для маломощных радиостанций.

 

1. Назначение и основные эксплуатационно-технические
характеристики радиопередатчика

Радиопередатчиком называется радиотехническое устройство, преобразующее первичные электрические сигналы в радиосигналы определенной мощности, необходимой для обеспечения радиосвязи на заданное расстояние с требуемой надежностью.

Независимо от вида передаваемых сигналов передатчик выполняет следующие функции:

1) формирование сетки (множества) высокочастотных несущих колебаний в рабочем диапазоне с заданной дискретностью;

2) модуляция (или манипуляция) несущих колебаний по закону передаваемых первичных сигналов;

3) усиление сформированных радиосигналов до заданной мощности за счет энергии местных источников питания;

4) преобразование усиленных радиосигналов в электромагнитные волны.

В состав любого радиопередатчика, обобщенная структурная схема которого представлена на рис.2.1, входят следующие основные элементы: возбудитель, усилитель мощности, согласующее антенное устройство и система электропитания.

Рис. 2.1. Структурная схема радиопередатчика

 

Основными техническими характеристиками любого радиопередатчика являются:

– диапазон и количество рабочих частот;

– виды радиосигналов;

– мощность и коэффициент полезного действия;

– стабильность частоты излучаемых радиосигналов;

– уровень побочных излучений;

– время перестройки передатчика с одной частоты на другую.

1. Диапазон рабочих частот характеризуется двумя параметрами: граничными частотами диапазона и , а также коэффициентом перекрытия диапазона по частоте

.

В УКВ диапазоне обычно не превышает 1,3 (в некоторых случаях может достигать величины 3,0). Для передатчиков КВ диапазона значение коэффициента перекрытия колеблется в пределах 10-20.

При заданном интервале между соседними частотами (шаге сетки) диапазон частот определяет общее количество рабочих частот N, на которое может быть настроен передатчик:

Обычно интервалы между соседними частотами равны 0,01; 0,1; 1,0; 10 и
25 кГц.

2. Виды радиосигналов, используемых для радиосвязи, можно разделить на две группы: телефонные, формируемые в процессе модуляции, и телеграфные, формируемые в процессе манипуляции.

В настоящее время при формировании телефонных радиосигналов наиболее широко используются методы однополосной (ОМ) и частотной (ЧМ) модуляции и практически не применяются устаревшие методы амплитудной (АМ) модуляции. При работе телеграфными радиосигналами применяются методы амплитудного (АТ), частотного (ЧТ и ДЧТ) и относительного фазового (ОФТ) телеграфирования.

3. Мощность радиопередатчика является одной из важнейших характеристик и в значительной степени определяет уровень сигнала в точке приема, а следовательно, дальность радиосвязи и ее надежность. Под мощностью радиопередатчика понимается средняя мощность радиосигнала, подводимая к передающей антенне.

Для всех видов телефонных радиосигналов (кроме ОМ) средняя мощность измеряется при отсутствии первичного сигнала (в режиме молчания). Для телефонных радиосигналов с ОМ мощность радиопередатчика определяется пиковой мощностью радиосигнала при максимальном (пиковом) значении первичного модулирующего сигнала. При работе радиопередатчиков телеграфными радиосигналами мощность оценивается средней мощностью, подводимой к антенне при передаче положительной (токовой) посылки первичного электрического сигнала или, как принято говорить, «в режиме нажатого ключа».

Общий (промышленный) КПД радиопередатчика определяется отношением мощности, подводимой к антенне, к общей мощности, потребляемой его цепями от первичного источника питания. В современных радиопередатчиках средней и большой мощности общий КПД составляет 25...30 % [2].

4. Стабильность частоты излучаемых радиосигналов определяет устойчивость и надежность радиосвязи, обеспечивает вхождение в связь без поиска корреспондентов и без подстройки приемника. Количественно стабильность частоты оценивается либо абсолютной, либо относительной нестабильностью.

Под абсолютной нестабильностью частоты понимается разность между ее текущим (измеренным) значением/и номинальным (требуемым) значением :

Относительная нестабильность частоты позволяет сравнивать передатчики, работающие в различных диапазонах, и определяется отношением абсолютной нестабильности к номинальному значению частоты, на котором осуществляется измерение:

.

Относительная нестабильность частоты современных радиопередатчиков составляет = 10-6... 10-7 и выше.

5. Уровень побочных излучений (колебаний). Под побочными (паразитными) излучениями понимаются радиосигналы, излучаемые антенной на частотах, расположенных за пределами спектра основного радиосигнала. Побочные колебания возникают в возбудителях и усилительных трактах, а также в САУ, если в них содержатся нелинейные элементы. Побочные излучения расширяют занимаемую радиосигналом полосу частот и оказывают мешающее действие соседним каналам связи.

Принято различать два вида побочных излучений: излучения на гармониках основной частоты, возникающие в результате нелинейного режима усиления радиосигнала в УМ, и излучения на комбинационных частотах, возникающие в результате нелинейных преобразований при формировании сигналов на рабочей частоте в возбудителе. Последние являются наиболее опасными, поскольку могут находиться в непосредственной близости от спектра основного радиосигнала и практически не фильтруются в усилительных каскадах передатчика.

Относительный уровень побочных излучений оценивается отношением мощности побочного излучения Рпи к мощности основного излучения РА и выражается в децибелах:

В соответствии с современными требованиями гармоники основного излучения (вторые и более высокие) должны быть подавлены на выходе радиопередатчика не менее чем на 65 дБ.

Нормы по подавлению комбинационных частот следующие:

¨ в полосе частот, отстоящих от спектра основного сигнала на
(± 3,5)…(± 25) кГц – не менее 80 дБ;

¨ 4 от ± 25 кГц и до ± 10 % от установленной частоты – не менее 120 дБ;

¨ свыше ± 10 % от установленной частоты – не менее 140 дБ.

6. Время перестройки передатчика с одной частоты на другую в значительной степени определяет надежность радиосвязи, особенно в условиях сложной помеховой обстановки. Современные радиопередатчики, имеющие системы заранее подготовленных частот (ЗПЧ), обеспечивают перестройку с одной ЗПЧ на другую в течение единиц секунд. В настоящее время предъявляются более жесткие требования к указанной характеристике. Так, при использовании радиостанций в частотно-адаптивных радиолиниях время перестройки должно ограничиваться единицами миллисекунд.

Кроме рассмотренных выше характеристик важное значение имеют также эксплуатационные и конструктивные характеристики радиопередатчиков:

– время готовности к работе, которое измеряется с момента включения радиопередатчика и до момента достижения номинальных значений параметров, в том числе требуемой стабильности частоты. В зависимости от типов радиопередатчиков и используемых в них усилительных элементов это время составляет от единиц секунд до десятков минут;

– время непрерывной работы. Радиопередатчики большой мощности, как правило, должны быть рассчитаны на непрерывную работу в течение суток, средней мощности - на непрерывную работу в течение нескольких часов, а для переносных радиостанций в ряде случаев предусматривается работа в течение меньших отрезков времени. Эта характеристика определяет выбор источников питания, системы охлаждения и конструкции выходных каскадов усилителей мощности;

– надежность, оцениваемая наработкой на отказ, которая должна составлять для серийно выпускаемых радиопередатчиков средней и большой мощности на втором году их эксплуатации 2.. .3 тыс. ч;

– устойчивость к механическим воздействиям (вибростойкость, ударо-стойкость) и независимость работы радиопередатчика от климатических условий. Эти требования вытекают из необходимости надежной работы радиопередатчика в различных, порой весьма сложных условиях эксплуатации;

– габариты, масса и т. д.

Требования к основным техническим характеристикам современных радиопередатчиков чрезвычайно высоки и обычно находятся в противоречии.

Синтезаторы частот

Практические схемы синтезаторов частот (в дальнейшем просто синтезаторов) весьма разнообразны. Несмотря на это, можно отметить общие принципы, лежащие в основе построения современных синтезаторов:

– современные синтезаторы содержат, как правило, один опорный кварцевый генератор, частоту колебаний которого называют первичной опорной частотой;

– широкое применение делителей, умножителей, преобразователей частоты и датчиков опорных частот, обеспечивающих синтез сетки частот с использованием одного опорного колебания;

– обеспечение синтезаторами принципа декадной установки частоты возбудителя.

По методам образования выходных колебаний системы синтеза частот можно разделить на два класса:

1) системы прямого (пассивного) синтеза частот;

2) системы косвенного (активного) синтеза частот.

Системы прямого синтеза не содержат автогенераторов и предполагают получение заданных выходных частот из частоты опорного генератора путем простых арифметических действий над ней: умножения, деления, сложения и вычитания. Появляющиеся при этом побочные колебания ослабляются непосредственной фильтрацией с помощью перестраиваемых или коммутируемых полосовых фильтров.

В системах, косвенного синтеза для получения выходных частот используется дополнительный автогенератор с параметрической стабилизацией частоты. Нестабильность частоты этого автогенератора устраняется различными методами, которые будут рассмотрены ниже.

Системы синтеза частот того или другого класса могут быть выполнены на аналоговых элементах или с использованием цифровой элементной базы. Системы синтеза частот, осуществляемого цифровыми методами, называют системами цифрового синтеза, а устройства, использующие такие системы, – цифровыми синтезаторами.

Цифровые синтезаторы частот

Широкое использование логических интегральных схем в технике связи обусловило появление новых типов синтезаторов частот, которые принято называть цифровыми. Наибольшее распространение получили цифровые синтезаторы, выполненные по методу косвенного синтеза с фазовой автоматической подстройкой частоты.

Наиболее простая схема цифрового синтезатора с системой ИФАП представлена на рис. 2.9.

В состав схемы входят управляемый генератор (УГ), формирующие устройства (ФУ), делитель с переменным коэффициентом деления (ДПКД), импульсно-фазовый детектор (ИФД) и ФНЧ.

Рис. 2.9. Система ИФАП цифрового синтезатора частоты

 

Колебания УГ, преобразованные с помощью формирующего устройства в импульсную последовательность той же частоты, поступают на ДПКД. На выходе делителя имеет место последовательность импульсов с частотой следования , где N - коэффициент деления ДПКД, величина которого изменяется в необходимых пределах внешними органами управления. Последовательность с выхода ДПКД поступает на вход ИФД, где сравнивается с эталонной импульсной последовательностью.

На выходе ИФД выделяется управляющее напряжение, зависящее от разности фаз (частот) сравниваемых колебаний, и приводит систему в стационарное состояние, при котором соблюдается условия:

Из приведенного выражения видно, что выходная частота генератора полностью определяется эталонной частотой и установленным значением коэффициента деления N. При этом относительная нестабильность частоты УГ определяется относительной нестабильностью частоты опорного колебания.

Таким образом, применение цифровых элементов позволило заменить преобразователи частоты делителями, что существенно уменьшает уровень побочных колебаний на выходе синтезатора. Кроме того, использование ДПКД резко увеличило полосу схватывания системы ФАП, поэтому в сравнительно узкодиапазонных синтезаторах не требуется применение систем автопоиска.

Рассмотренные выше синтезаторы частот, независимо от методов их построения, находят широкое применение не только в возбудителях радиопередатчиков, но и в целом ряде различных радиотехнических устройств. В супергетеродинных радиоприемниках синтезаторы частот выполняют функции гетеродинов. Синтезаторы широко используются в измерительных приборах (генераторах, частотомерах, анализаторах спектра и пр.), в телеметрических устройствах, в различных приборах, предназначенных для физических исследований, и т. д.

4. Тракты формирования радиосигналов

 

Одной из функций возбудителя является преобразование первичных электрических сигналов в высокочастотные сигналы (радиосигналы). Это преобразование рассматривается как формирование радиосигналов.

В современных военных радиостанциях широко используются следующие виды радиосигналов:

¨ телефонные с однополосной модуляцией (ОМ);

¨ телефонные с частотной модуляцией (ЧМ);

¨ телеграфные с амплитудной манипуляцией (АТ – амплитудное телеграфирование);

¨ телеграфные с частотной манипуляцией (ЧТ – частотное телеграфирование);

¨ телеграфные с двойной частотной манипуляцией (ДЧТ);

¨ телеграфные с относительной фазовой манипуляцией (ОФТ).

Каждый вид радиосигналов требует специальных устройств, которые реализуют тот или иной метод формирования. Все формирующие устройства обычно объединяются в один конструктивный и функциональный блок – блок формирования радиосигналов (БФС).

Независимо от вида формируемых радиосигналов к БФС предъявляются следующие общие требования:

– минимальный уровень нелинейных и частотных искажений первичного сигнала в процессе формирования радиосигнала;

– минимальный уровень побочных колебаний в процессе формирования радиосигналов;

– малый уровень собственных шумов на выходе БФС;

– высокая стабильность частоты формируемых радиосигналов.

Выполнение указанных требований легче обеспечить при сравнительно малых уровнях сигналов и относительно низких частотах. Поэтому в большинстве случаев радиосигналы первоначально формируются в БФС на одной фиксированной частоте, измеряемой сотнями килогерц или единицами мегагерц, а затем с помощью ряда преобразований частоты (в такте преобразования радиосигналов) спектр сигнала переносится в область более высоких частот, а при последнем преобразовании - на рабочую частоту возбудителя. Все опорные колебания, обеспечивающие преобразование сигнала и перенос его спектра на рабочую частоту, вырабатываются синтезатором.

Рассмотрим принципы формирования отдельных видов радиосигналов.

4.1. Формирование радиосигналов с однополосной

модуляцией

 

В настоящее время при работе радиостанций в телефонном режиме на частотах до 20...30 МГц основным видом модуляции стала однополосная модуляция (ОМ), которая имеет ряд неоспоримых преимуществ по сравнению с применявшейся ранее амплитудной модуляцией (см. занятие № 1).

Существуют различные способы формирования ОМ сигналов: фильтровый, фазофильтровый, фазокомпенсационный, синтетический и др. В современной аппаратуре находит широкое применение только один из них – фильтровый способ. Этот способ прост в реализации и обеспечивает получение высоких качественных показателей возбудителей. Фильтровый способ предполагает выделение с помощью полосового фильтра одной из боковых полос амплитудно-модулированного сигнала. Принцип формирования ОМ сигнала поясняется рис. 2.10.

Рис. 2.10. Фильтровый способ формирования ОМ сигналов

 

На входы балансного модулятора подаются первичный электрический сигнал, имеющий спектр F, и гармонический сигнал с частотой в качестве несущего колебания. На выходе модулятора, собранного по балансной схеме, получается спектр АМ сигнала в составе нижней боковой полосы частот ( ), верхней боковой полосы частот ( ) и подавленной несущей . Узкополосный фильтр на выходе модулятора предназначен для выделения необходимой боковой полосы частот (на рис. 2.10 – верхней) и подавления второй боковой полосы и остатка несущей.

В военной радиосвязи первичный сигнал занимает полосу частот
F = 300...3400 Гц, поэтому расстояние на частотной оси между подавляемой и не подавляемой боковыми полосами составит всего 600 Гц. Необходимость эффективного подавления (60 дБ) второй боковой полосы частот, столь близко расположенной на оси частот к выделяемому сигналу, предъявляет жесткие требования к полосовому фильтру. В современных возбудителях применяются, как правило, кварцевые фильтры, рассчитанные на стандартные промежуточные частоты (чаще всего = 128 кГц).









Читайте также:

  1. D.3. Системы эконометрических уравнений
  2. I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ
  3. I.2. Основные интерпретации катарсиса.
  4. I.Расчет подающих трубопроводов системы горячего водоснабжения при отсутствии циркуляции.
  5. II. Основные принципы и правила служебного поведения государственных служащих
  6. II. ЦЕЛИ, ОСНОВНЫЕ НАПРАВЛЕНИЯ ДЕЯТЕЛЬНОСТИ И ЗАДАЧИ ПРОФСОЮЗА
  7. III. Системы теплоснабжения и отопления
  8. IV. Движение поездов при неисправности электрожезловой системы и порядок регулировки количества жезлов в жезловых аппаратах
  9. IV. Основные способы и средства защиты населения в чрезвычайных ситуациях.
  10. V. ОСНОВНЫЕ ФАКТОРЫ РИСКА ВОЗНИКНОВЕНИЯ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ ПРИРОДНОГО И ТЕХНОГЕННОГО ХАРАКТЕРА.
  11. V. Регламент переговоров машиниста и помощника машиниста по поездной радиосвязи
  12. V1: 2. Основные этапы становления и развития финансовой системы России


Последнее изменение этой страницы: 2016-03-26; Просмотров: 817;


lektsia.info 2017 год. Все права принадлежат их авторам! Главная