Лекции.ИНФО


ТЕОРЕТИЧЕСКИЕ МОДЕЛИ В СТРУКТУРЕ ТЕОРИИ



Своеобразной клеточкой организации теоретических знаний на каждом из его подуровней является двухслойная конструкция — теоретическая модель и формулируемый относительно неё теоретический закон.

Рассмотрим вначале, как устроены теоретические модели. В качестве их элементов выступают абстрактные объекты (теоретические конструкты), которые находятся в строго определённых связях и отношениях друг с другом. Теоретические законы непосредственно формулируются относительно абстрактных объектов теоретической модели. Они могут быть применены для описания реальных ситуаций опыта лишь в том случае, если модель обоснована в качестве выражения существенных связей действительности, проявляющихся в таких ситуациях.

Например, если изучаются механические колебания тел (маятник, тело на пружине и так далее), то, чтобы выявить закон их движения, вводят представление о материальной точке, которая периодически отклоняется от положения равновесия и вновь возвращается в это положение. Само это представление имеет смысл только тогда, когда зафиксирована система отсчёта. А это второй теоретический конструкт, фигурирующий в теории колебаний. Он соответствует идеализированному представлению физической лаборатории, снабженной часами и линейками. Наконец, для выявления закона колебаний необходим ещё один абстрактный объект — квазиупругая сила, которая вводится по признаку: приводить в движение материальную точку, возвращая её к положению равновесия.

Система перечисленных абстрактных объектов (материальная точка, система отсчёта, квазиупругая сила) образует модель малых колебаний (называемую в физике осциллятором). Исследуя свойства этой модели и выражая отношения образующих её объектов на языке математики, получают формулу mх¨ + k 2x = 0, которая является законом малых колебаний. Этот закон непосредственно относится к теоретической модели, описывая связи и отношения образующих её абстрактных объектов. Но поскольку модель может быть обоснована как выражение сущности реальных процессов колебания тел, постольку полученный закон можно применить ко всем подобным ситуациям.

В развитых в теоретическом отношении дисциплинах, применяющих количественные методы исследования (таких, как физика), законы теории формулируются на языке математики. Признаки абстрактных объектов, образующих теоретическую модель, выражаются в форме физических величин, а отношения между этими признаками -в форме связей между величинами, входящими в уравнения. Применяемые в теории математические формализмы получают свою интерпретацию благодаря их связям с теоретическими моделями. Богатство связей и отношений, заложенное в теоретической модели, может быть выявлено посредством разработки математического аппарата теории. Решая уравнения и анализируя полученные результаты, исследователь как бы развёртывает содержание теоретической модели и таким способом получает все новые и новые знания об исследуемой реальности.

Теоретические модели не являются чем-то внешним по отношению к теории. Они входят в её состав. Их следует отличать от аналоговых моделей, которые служат средством построения теории, её своеобразными строительными лесами, но целиком не включаются в созданную теорию. Например, аналоговые гидродинамические модели трубок с несжимаемой жидкостью, вихрей в упругой среде и так далее, применявшиеся при построении Максвеллом теории электромагнитного поля, были «строительными лесами», но модели, характеризующие процессы электромагнетизма как взаимосвязи электрических и магнитных полей в точке, зарядов и электрических токов в точке, были составной частью теории Максвелла. Чтобы подчеркнуть особый статус теоретических моделей, относительно которых формулируются законы и которые обязательно входят в состав теории, назовём их теоретическими схемами. Они действительно являются схемами исследуемых в теории объектов и процессов, выражая их существенные связи.

Можно высказать достаточно универсальный методологический тезис: формулировки теоретических законов непосредственно относятся к системе теоретических конструктов (абстрактных объектов). И лишь в той мере, в какой построенные из них теоретические схемы репрезентируют сущностные связи исследуемой реальности, соответствующие законы могут быть применимы к её описанию.

Эту особенность теоретических знаний можно проследить не только в физике, хотя здесь она проявляется в наиболее отчётливой форме. Эта особенность прослеживается во всех тех областях науки, которые вступили в стадию теоретизации. Возьмём, например, закон Харди — Вейнберга, известный закон популяционной генетики, характеризующий условия генетической стабильности популяций. Этот закон принадлежит к довольно немногочисленной группе биологических законов, которые получили математическую формулировку. Он был сформулирован относительно построенной Харди и Вейнбергом теоретической модели (схемы) распределения в популяции мутантных форм.

Популяция в этой модели представляла собой типичный идеализированный объект — это была неограниченно большая популяция со свободным скрещиванием особей. Она могла быть сопоставлена с реальными, большими по численности популяциями, если пренебрежимо малы миграционные и мутационные процессы и можно отвлечься от факторов естественного отбора и от ограничений на панмиксию 5. Но именно благодаря этим идеализирующим допущениям теоретическая модель фиксировала сущностные связи, характеризующие относительную стабильность популяций, а сформулированный на базе этой модели закон Харди — Вейнберга по праву занял место одного из наиболее важных законов популяционной генетики. Здесь нетрудно увидеть прямое сходство с развитыми формами теоретических знаний физики.

Идеализированный объект, относительно которого формулировался закон Харди — Вейнберга, выполнял те же функции, что и, например, модель идеального маятника при открытии закона малых колебаний или модель идеального газа при формулировке законов поведения разреженных газов под относительно небольшими давлениями.

В теориях социальных наук также можно обнаружить, что формулировка теоретических законов сопряжена с введением идеализированных объектов, упрощающих и схематизирующих эмпирически наблюдаемые ситуации. Так, в современных неоклассических экономических теориях одним из важных законов, который конкретизируется и модифицируется в процессе развёртывания этих теорий и их развития, является знаменитый закон Л. Вальраса — швейцарского экономиста конца XIX века. Этот закон предполагает, что в масштабах хозяйства, представленного различными товарными рынками, включая рынок денег, сумма избыточного спроса (величина разрыва между спросом на отдельные товары и их предложением) всегда равна нулю. Нетрудно установить, что закон Вальраса описывает идеализированную модель (схему) взаимоотношения различных товарных рынков, когда их система находится в равновесии (спрос на товары на каждом рынке равен их предложению) 6. В реальности так не бывает. Но это примерно так же, как не бывает материальных точек, абсолютного твёрдого тела, идеального газа.

Разумеется, каждая теоретическая схема и сформулированный относительно неё закон имеют границы своей применимости. Закон идеального газа не подходит для ситуаций с большими давлениями. В этом случае он сменяется уравнением (законом) Я. Ван-дер-Ваальса, учитывающим силы молекулярного взаимодействия, от которых абстрагируется модель идеального газа. Точно так же в экономической теории модель и закон Вальраса требуют корректировки при описании сложных процессов взаимодействия различных рынков, связанных с нарушениями реализации товаров и не приближённых к равновесным процессам. Эти ситуации выражают более сложные теоретические модели (например, модель Кейнса — Викселя, усовершенствованная Дж. Стенном и Г. Роузом, в которой допускалось неравновесие рынков, а также предложенная американскими экономистами Д. Па-тинкиным, Д. Левхари и Г. Джонсоном в 1960–1970-х годах модель неравновесия рынков, учитывающих эффект кассовых остатков и активную роль денежного рынка 7).

Формулировка новых теоретических законов позволяет расширить возможности теоретического описания исследуемой реальности. Но для этого каждый раз нужно вводить новую систему идеализации (теоретических конструктов), которые образуют в своих связях соответствующую теоретическую схему Даже в самых «мягких» формах теоретического знания, к которым относят обычно такие гуманитарные дисциплины, как литературоведение, музыковедение, искусствознание (противопоставляя их «жёстким» формам математизированных теорий естественных наук), можно обнаружить слой абстрактных теоретических объектов, образующих теоретические модели исследуемой реальности. Я сошлюсь здесь на исследования В. М. Розина, применившего разработанную мною концепцию теоретических знаний к техническим и гуманитарным дисциплинам. В. М. Розиным были проанализированы тексты работ М. М. Бахтина и Б. И. Бурсова, посвящённые творчеству Ф. М. Достоевского, тексты теоретического музыковедения и текст искусствоведческой работы В. А.

Плугина, в которой анализируется живопись Андрея Рублева. Во всех этих ситуациях автор выявляет слой теоретических знаний и показывает, что движение исследовательской мысли в этом слое основано на конструировании идеальных теоретических объектов и оперировании ими. В частности, основные теоретические выводы Бахтина, касающиеся особенностей «полифонического романа» Достоевского, были получены благодаря конструированию теоретической схемы, элементами которой выступают такие идеальные объекты, как «голоса героев» и «голос автора», вступающие в диалогические отношения 8. Таким образом, можно заключить, что идеальные теоретические объекты и построенные из них целостные теоретические модели (схемы) выступают существенной характеристикой структуры любой научной теории, независимо от того, принадлежит ли она к сфере гуманитарных, социальных или естественных наук.

Соответственно двум подуровням теоретического знания можно выделить теоретические схемы и в составе фундаментальной теории, и в составе частных теорий. В основании развитой теории это фундаментальная теоретическая схема, которая построена из небольшого набора базисных абстрактных объектов, конструктивно независимых друг от друга, и относительно которой формулируются фундаментальные теоретические законы.

Например, в ньютоновской механике её основные законы формулируются относительно системы абстрактных объектов: «материальная точка», «сила», «инерциальная пространственно-временная система отсчёта». Связи и отношения перечисленных объектов образуют теоретическую модель механического движения, изображающую механические процессы как перемещение материальной точки по континууму точек пространства инерциальной системы отсчёта с течением времени и как изменение состояния движения материальной точки под действием силы.

Аналогичным образом в классической электродинамике сущность электромагнитных процессов представлена посредством теоретической модели, которая образована отношениями конструктов «электрическое поле в точке», «магнитное поле в точке» и «ток в точке». Выражением этих отношений являются фундаментальные законы теории электромагнитного поля.

Кроме фундаментальной теоретической схемы и фундаментальных законов в состав развитой теории входят частные теоретические схемы и законы.

В механике это теоретические схемы и законы колебания, вращения тел, соударения упругих тел, движение тела в поле центральных сил, и так далее. В классической электродинамике к слою частных моделей и законов, включённых в состав теории, принадлежат теоретические схемы электростатики и магнитостатики, кулоновского взаимодействия зарядов, магнитного действия тока, электромагнитной индукции, постоянного тока и так далее.

Когда эти частные теоретические схемы включены в состав теории, они подчинены фундаментальной, но по отношению друг к другу могут иметь независимый статус. Образующие их абстрактные объекты специфичны. Они могут быть сконструированы на основе абстрактных объектов фундаментальной теоретической схемы и выступать как их своеобразная модификация. Различию между фундаментальной и частными теоретическими схемами в составе развитой теории соответствует различие между её фундаментальными законами и их следствиями.

Как уже отмечалось, частные теоретические схемы и связанные с ними уравнения могут предшествовать развитой теории. Более того, когда возникают фундаментальные теории, рядом с ними могут существовать частные теоретические схемы, описывающие эту же область взаимодействия, но с позиций альтернативных представлений. Так, например, обстояло дело с фарадеевскими моделями электромагнитной и электростатической индукции. Они возникли в период, когда создавался первый вариант развитой теории электричества и магнетизма — электродинамика А. Ампера. Это была достаточно развитая математизированная теория, которая описывала и объясняла явления электричества и магнетизма с позиций принципа дальнодействия. Что же касается теоретических схем, предложенных М. Фарадеем, то они базировались на альтернативной идее — близкодействия.

Нелишне подчеркнуть, что законы электростатической и электромагнитной индукции были сформулированы Фарадеем в качественном виде, без применения математики. Их математическая формулировка найдена позднее, когда была создана теория электромагнитного поля. При построении этой теории фарадеевские модели были видоизменены и включены в её состав.

Это обстоятельство характерно для судеб любых частных теоретических схем, ассимилируемых развитой теорией. Они редко сохраняются в своём первоначальном виде, а чаще всего трансформируются и только благодаря этому становятся компонентом развитой теории.

Итак, строение развитой естественнонаучной теории можно изобразить как сложную, иерархически организованную систему теоретических схем и законов, где теоретические схемы образуют своеобразный внутренний скелет теории.









Последнее изменение этой страницы: 2017-05-06; Просмотров: 17;


lektsia.info 2017 год. Все права принадлежат их авторам! Главная