- Lektsia - бесплатные рефераты, доклады, курсовые работы, контрольные и дипломы для студентов - https://lektsia.info -

Экономико-математически модели управления запасами

   В реальных условиях случай детерминированного статистического спроса встречается редко. Такой случай можно рассматривать как простейший. Так, например, хотя спрос на такие продукты массового потребления, как хлеб, может меняться от одного дня к другому, эти изменения могут быть столь незначительными, что предположение статичности спроса несущественно искажает действительность.

   Наиболее точно характер спроса может быть, возможно, описан посредством вероятностных нестационарных распределений. Однако с математической точки зрения модель значительно усложняется, особенно при увеличении рассматриваемого периода времени. При переходе от детерминированного статического спроса к вероятностному стационарному спросу происходит возрастание математической сложности модели управления запасами. По существу, классификацию можно считать представлением различных уровней абстракции описания спроса.

   На первом уровне предполагается, что распределение вероятности спроса стационарно во времени. Это означает, что для описания спроса в течение всех исследуемых периодов времени используется одна и та же функция распределения вероятностей. При таком предположении влияние сезонных колебаний спроса в модели не учитывается.

   На втором уровне абстракции учитывается изменение спроса от одного периода к другому. Однако при этом функции распределения не меняются, а потребности в каждом периоде описываются средней величиной спроса. Это упрощение означает, что элемент риска в управлении запасами не учитывается. Однако оно позволяет исследовать сезонные колебания спроса, которые вследствие аналитических и вычислительных трудностей нельзя учесть вероятностной модели. Другими словами, здесь возникает определенный компромисс: можно использовать, с одной стороны, стационарные распределения вероятностей, а с другой – переменную, но известную функцию спроса при допущении «определённости».

   На третьем уровне упрощения исключаются как элементы риска, так и изменения спроса. Тем самым спрос в течение любого периода предполагается равным среднему значению известного (по предположению) спроса по всем рассматриваемым периодам. В результате этого упрощения спрос можно оценить его постоянной интенсивностью.

Хотя характер спроса является одним из основных факторов при построении модели управления запасами, имеются другие факторы, влияющие на выбор типа модели. К их числу относятся:

1.  Задержка поставок может увеличиваться в период низкого спроса, когда поставщик накапливает заказы перед запуском производства. Тот же эффект может наблюдаться и при очень высоком спросе, создающем очередь заявок. В некоторых моделях с задержкой, кроме обычной, вводится экспертная поставка, которая, как правило, принимается мгновенной. Возможность такой поставки исключает отрицательные уровни запаса. Может существовать различие в объеме поставок: поставка равна требуемому количеству; поставка равна случайной величине с характеристиками законом распределения, в общем случае зависимыми от величины заказа. Если случайность является следствием плохой организации снабжения, необходимо организованными мерами добиваться своевременного и полного выполнения заказов.

2.                Пополнение запасов всегда происходит с некоторой случайной задержкой относительно момента выдачи требования. Однако роль и длина этой задержки сильно зависят от конкретных условий, что позволяет в ряде случаев упростить задачу. Степень возможного упрощения определяет один из следующих вариантов:

§                   мгновенная поставка;

§                   задержка поставок на фиксированный срок (в частности, кратный длине периода);

§                   случайная задержка с известным распределением длительности.

3.                Период времени определяет интервал, в течение которого осуществляется регулирование уровня запаса. В зависимости от отрезка времени, на котором можно надежно прогнозировать рассматриваемый период принимается конечным или бесконечным.

4.                Число пунктов накопления запаса.В систему управления запасами может входить несколько пунктов хранения запаса. В некоторых случаях эти пункты организованны таким образом, что один выступает в качестве поставщика для другого. Эта схема иногда реализуется на различных уровнях, так что пункт – потребитель одного уровня может стать пунктом – поставщиком на другом. В таком случае принято говорить о системе управления запасами с разветвленной структурой.

5.                Число видов продукции.В системе управления запасами может фигурировать более одного вида продукции. Это фактор учитывается при условии наличия некоторой зависимости между различными видами продукции. Так, для различных изделий может использоваться одно и то же складское помещение или же их производство может осуществляться при ограничениях на общие производственные фонды.

Функция затрат образует показатель эффективности принятой стратегии и учитывает следующие издержки:

§             расходы на хранение;

§             транспортные расходы и затраты, связанные с заказом каждой новой партии;

§             затраты на штрафы.

Иногда в минимизируемую функцию включаются доходы, полученные от продажи остатков запаса в конце каждого периода. В некоторых случаях ставится задача максимизации доходов.

Ограничения в задачах управления запасами могут быть различного характера. Известны следующие виды ограничений:

§             по максимальному объему (весу, стоимости) запасов;

§             по средней стоимости;

§             по числу поставок в заданном интервале времени;

§             по максимальному объему (весу, стоимости) поставки или кратности этого объема некоторой минимальной величине (целое число стандартных «упаковок» — вагонов, бочек, коробок);

§             по доле требований, удовлетворяемых из наличного запаса (без дополнительных задержек).

Необходимо отметить, что область применения теории управления запасами отнюдь не ограничивается складскими операциями. Под запасами можно подразумевать: наличие товара; рабочую силу, планируемую для выполнения конкретного задания; объем информации в базе данных; численность персонала данной квалификации и т.д. Таким образом, при переосмысливании элементов модели методами теории управления запасами может быть решен широкий круг задач оптимального планирования.


2. ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ.
Чрезвычайно трудно построить обобщенную модель управления запасами, которая учитывала бы все разновидности условий, наблюдаемых в реальных системах. Но если бы и удалось построить достаточно универсальную модель, она едва ли оказалась аналитически разрешимой. Представление в этом разделе модели соответствуют некоторым системам  управления запасами. Маловероятно, что эти модели могут точно подойти для реальных условий, однако они приведены с целью различных подходов к решению некоторых конкретных задач управления запасами.

   В этом разделе обсуждается пять моделей. Большинство из них однопродуктовые, и только в одной из них учитывается влияние нескольких «конкурирующих» видов продукции. Основное различие между моделями определяется допущением о  характера спроса (статический или динамический). Важным фактором с точки зрения формулировки и решения задачи является  также вид функции затрат. Используются различные методы решения. Эти примеры наглядно показывают, что при решении задач управления запасами следует применять различные методы оптимизации.  


2.1. Модель Уилсона.
Рассмотрение моделей управления запасами начнем с простейшего случая.

Модель Уилсона, в определенном смысле классическая, основана на выборе такого фиксированного размера заказываемой партии, который минимизирует расходы на оформление заказа, доставку и хранение товара.

Экономическая партия товара вычисляется при следующих упрощениях реальной ситуации:

Ø          уровень запасов убывает с постоянной интенсивностью, и в тот момент, когда все запасы товара исчерпаны, подается заказ на поставку новой партии;

Ø          выполнение заказа осуществляется мгновенно, т. е. время доставки равно нулю и уровень запасов восстанавливается до значения равного q;

Ø          накладные расходы, связанные с размещением заказа и поставкой товара, не зависят от объема партии и равны постоянной величине;

Ø          ежедневная стоимость хранения единицы товара равна постоянной величине.

Данная политика проводимая складом характерна для тех случаев, когда интенсивность потребления запасов близка к постоянной величине, а поставки производятся регулярно.

Простейшая модель оптимальной партии поставки строится при следующих предложениях: спрос v в единицу времени является постоянным; заказанная партия доставляется одновременно; дефицит недопустим; затраты K на организацию поставки постоянны и не зависят от величины q партии; издержки содержания единицы продукции в течение единицы времени составляют s. На рис. 2.1. показана динамика изменения уровня  I запасов.

    продолжение
 



Уровень запаса снижается равномерно от q до 0, после чего подается заказ на доставку новой партии величиной q. Заказ выполняется мгновенно и уровень запаса восстанавливается до величины q. Интервал времени длиной r между поставками называется циклом. Издержки в течение цикла Lц состоят из стоимости заказа K и затрат на содержание запаса, которые
пропорциональны средней величине запаса I1 = q/2 и длине цикла r = q/v,
 
Разделив это выражение на длину цикла, получим издержки в единицу времени

Оптимальный размер партии определяется из уравнения
 
(необходимый признак экстремума). Отсюда находим оптимальный размер q* партии:

Так как d2L/dq2 >0 (достаточный признак экстремума), то для всех q>0 выражение (2.2) является минимумом функции затрат (2.1). Уравнение (2.2) известно под многими названиями. Его называют формулой наиболее экономной величины заказа, формулой Уилсона, формулой квадратного корня. Чтобы найти оптимальные параметры работы системы, поставляем значение q* в соответствующие выражение. Получаем, что оптимальная стратегия предусматривает заказ q* через каждые

единиц времени. Наименьшие суммарные затраты работы системы в единицу времени
Пример 1.

Жидкие продукты нескольких видов разливаются в пакеты на одной линии упаковки. Затраты на подготовительно-заключительные операции составляют 700 ден. ед., потребность в продуктах составляет 140000 л в месяц, стоимость хранения 1 л в течение месяца – 4 ден. ед. Определить оптимальные параметры системы. Сравнить минимальные затраты с затратами при действующей системе разлива одного продукта в течение трех дней.


Решение. Оптимальные параметры модели Уилсона:




При действующей системе rд = 3 (дня) = 0,1 (месяца), qд = rд v = 14000 (литров). Величину затрат при действующей системе найдем по формуле (2.1):



2.2. Модель с конечной интенсивностью поступления заказа.
 
Пусть заказанная  партия поступает с интенсивностью u единиц в единицу времени. Очевидно система может работать без дефицита, если интенсивность поставок u превосходит интенсивность потребления v. Таким образом рассматривается система типа заводского склада, куда продукция, произведенная одним цехом, поступает с определенной интенсивностью и используется в производстве другого цеха. Изменение уровня запаса для рассматриваемого случая изображено на рис. 2.2. В течение времени r1 запас одновременно и поступает и расходуется, это время накопления запаса. В течение r2 запас только расходуется. Длина цикла r = r1 +r2. Учитывая, что максимальный наличный запас Iм = q(1-v/u) издержки системы в единицу времени составят

   



  Оптимальные параметры работы системы определяются обычным образом. Величины оптимальной партии




 
оптимальный период возобновления заказа

и его составляющие
минимальные издержки в единицу времени
 



В случае, когда интенсивность поставки значительно больше интенсивности потребления v/u    0, а (2.3), (2.4), (2.5) становятся параметрами обычной системы Уилсона.




2.3.Модель с учетом неудовлетворенных требований.



В некоторых случаях, когда потери из-за дефицита сравнимы с издержками хранения, дефицит допускается. Пусть требования, поступающие в момент отсутствия запаса, берутся на учет. Обозначим через y максимальную величину задолженного спроса рис. 2.3. Максимальная величина наличного запаса Y = q-y расходуется за время r1 (время существования наличного запаса), а затем поступающие требования ставятся на учет в течение времени r2 (время дефицита). При поступлении очередной партии в первую очередь удовлетворяется задолженый спрос, а затем пополняется запас. Убытки, связанные с дефицитом единицы запаса в единицу времени, составляют d. Затраты на хранение продукции пропорциональны средней величине запаса (q-y)/2 и времени его существования (q-y)/v; аналогично убытки от дефицита пропорциональны средней величине дефицита y/2 и времени его существования y/v. Средние издержки работы системы в течение цикла, включающие затраты на размещение заказа, содержание запаса и потери от дефицита

 




                                                                           

 




Разделим издержки цикла на его величину r = q/v и получим издержки работы системы в единицу времени
Откуда обычным способом находим







Подставив значения q* и y* в соответствующие выражения, найдем другие оптимальные параметры системы



В более сложных моделях управления запасами сохраняется общий подход: строится функция затрат на приобретение запаса, строится функция потерь при хранении запаса и при его нехватке, находится уравнение запасами, при котором минимизируются затраты и потери.

Возможно также решение задач управления запасами, в которых на переменные величины накладываются определенные ограничения. В качестве примера рассмотрим задачу оптимизации режима производства и хранения, которая относится к комбинированным задачам: задачам составления календарных расписаний и задачам управления запасами.

Задача выравнивания графика производства при неравномерной потребности в производимой продукции возникает на многих предприятиях. Для расчета графика производства решается следующая задача. Известна потребность в деталях определенного вида — at, где t=1,2,…, T – планируемый отрезок времени. Выпуск деталей за этот отрезок времени xt является искомой величиной. Неизвестен и запас изготовленных деталей на конец отрезка времени t-st. Известен лишь начальный запас s0. Очевидно, что запас на начало t-го периода st-1вместе с производством за этот период xt должен быть равным потребности at, плюс запас на конец периода st, т. е. xt+ st-1 — st= at.

Одним из условий задачи является равномерность составляемого графика производства. Поэтому чем меньше по абсолютной величине разница в выпуске деталей за каждые два последовательных периода (xt+1 — xt), тем стабильнее график выпуска. Представим эту разность как разность двух других независимых: xt+1 — xt= yt-zt. Неотрицательные переменные ytи zt показывают: yt — прирост, а zt – снижение производства при переходе от t-к (t+1)-й декаде. Целевая функция данной задачи имеет вид
где p – дополнительные затраты при изменении объема выпуска продукции; q – затраты, связанные с содержанием запасов.

В простейшем случае, когда неравномерность графика и увеличение запасов является одинаково нежелательными, задача заключается в минимизации
при соблюдении условий:

xt + st-1 — st = at;

xt+1 — xt — yt + zt = 0;
Рассмотрим указанную задачу на конкретном примере. (Приложение1).


2.4. Модель с определением точки заказа.



В реальных ситуациях следует учитывать время выполнения заказа Q.  Для обеспечения бесперебойного снабжения заказ должен подаваться в момент, когда уровень запаса достаточен для удовлетворения потребности на время выполнения заказа. Этот уровень называется точкой возобновления заказа и обозначается j. Для систем, в которых дефицит не допускается, заказ должен размещаться в момент, когда величина наличного запаса равна
где [.] – целая часть числа (.).


Для обеспечения бездефицитной работы необходим минимальный начальный запас I0, величина которого I0= Qv. Пусть I – фактический начальный запас. Для непрерывной работы необходимо, чтобы I >= Qv. Время потребления начального запаса равно I/v. Чтобы заказанная партия была доставлена не позже полного расхода начального запаса, ее нужно разместить в момент T0=  I/v – Q. В общем случае заказы нужно размещать в моменты

В системе с конечной интенсивностью поступления заказа при определении оптимальной точки рассматриваются два случая:





Для системы с учетом неудовлетворенных требований точка заказа определяется по формуле
и может быть отрицательной величиной. Это означает, что заявки на пополнение запаса должны посылаться, когда величина дефицита составляет [j].


2.5.       
Многономенклатурные модели.
До сих пор мы считали, что каждый вид товара хранится на складе независимо от остальных. Это допущение будет справедливым, если не налагаются ограничений на размер капиталовложений в запасы, на емкость складских помещений и т. п. Однако для многих случаев на практике имеют место указанные ограничения, и необходимы изменения размеров заказов по сравнению с какой-либо индивидуальной политикой, чтобы имелось соответствие наличным ресурсам. Кроме того, могут быть наложены ограничения на пропускную способность путей доставки и отпуска товаров со склада.

Складские системы промышленных предприятий содержат от нескольких десятков до нескольких тысяч номенклатур. Следовательно, возникает необходимость рассмотрения задач управления многономенклатурными запасами. Многие специалисты придерживаются мнения, что оптимизация должна проводиться лишь по 5-10% номенклатур, суммарная потребность в которых в стоимостном выражении составляет 60-70%.


  Раздельная оптимизация. При отсутствии взаимодействия между запасами различных видов продукции затраты L в единицу времени для системы, включающей N видов хранимой продукции вычисляются по формуле


Откуда, используя необходимый признак экстремума, находим

Минимальные издержки в единицу времени составляют

 
Пусть общая складская площадь ограничена величиной f. Ограничение на складские площади имеет вид:

где fi – площадь, необходимая для хранения единицы i-го вида продукции, qi – величина партии i –го вида продукции.

В выражении (2.7) обычно вводится нормировочный множитель h для учета того фактора, что запасы отдельных номенклатур могут поступать независимо друг от друга. Если запасы всех номенклатур пополняются одновременно, то в это время запас и занятая им площадь оказываются максимальными и h=1. Полагая h=1/2, допускаем, что запасы всех видов продукции пополняются в разное время, а уровень запасов и занятая ими площадь является средней. Маловероятно, что занятая площадь окажется много меньше половины имеющейся, поэтому

 
С учетом сказанного ограничение (2.7) запишется так:

Для определения экстремума функции (2.6) при наличии ограничения (2.8) применим метод множителей Лагранжа. Составим дополнительную функцию Лагранжа, которая состоит из двух слагаемых. Первое слагаемое – это функция, экстремальное (максимальное или минимальное) значение которой необходимо определить. В нашей задаче – это суммарные издержки в единицу времени, которые надо минимизировать. Второе слагаемое – это разность между левой и правой частью ограничивающего условия. Умноженная на неопределенный множитель  u, которому можно придать любое произвольное значение. Если ограничение является несущественным,

 



то о                    — отрицательная величина, а u = 0. возможны два случая


Это обеспечивает возможность составления функции Лагранжа.

 


Поскольку выражение                         в любом случае равно нулю, то функция
суммарных затрат в единицу времени будет иметь вид


Продифференцируем эту функцию по неизвестным параметрам qi и u и приравняем частные производные к нулю

Откуда выводим систему из N+1 уравнения с N+1 неизвестной q1,…qn, u

 
Неопределенный множитель Лагранжа в данном случае имеет конкретный экономический смысл. Он показывает, насколько можно сократить минимальные издержки функционирования системы в единицу времени, увеличив складские площади на единицу.


Аналогично решается задача, если ограничения накладываются на величину оборотных средств A, вложенных в запасы. Пусть ai — стоимость единицы материала i – го вида, тогда ограничение имеет вид:


Запишем систему для решения задачи

Неопределенный множитель Лагранжа в этой модели показывает, на сколько денежных единиц уменьшатся затраты в системе, если оборотные средства увеличатся на одну денежную единицу.

  Полное совмещение заказов. При пополнении запасов из одного источника часто несколько заказов объединяются. Суммарные издержки размещения N заказов считаются равными                      где K0 –

 


фиксированные издержки, не зависящие от числа номенклатур, а


— доля издержек заказа, связанных с размещением его на каждой номенклатуре. Период размещения заказа по всем номенклатурам будет общим. Обозначим его через r. Издержки размещения заказов и содержание запасов в единицу времени

 
Отсюда




Часто необходимо бывает минимизировать суммарные издержки при различных ограничениях. Пусть, например площадь склада равна f, а единица i-го вида продукции требует для хранения                     квадратных

 


 
метров. С учетом того, что qi = rui, ограничение по складским площадям имеет вид

  Ограничение по оборотным средствам


В случае одного ограничения задача решается по следующей схеме. Определяется r0по формуле (2.10). Если r0 удовлетворяет ограничению, то r*= r0. Если r0 не удовлетворяет ограничению, то r* должно превратить ограничение (2.11) или (2.12) в строгое равенство, тогда оптимальный период возобновления поставок для ограничения по площади


для ограничения по оборотным средствам


Оптимальный поставочный комплект

    продолжение