- Lektsia - бесплатные рефераты, доклады, курсовые работы, контрольные и дипломы для студентов - https://lektsia.info -

мигрирующие генетические элементы



В наши дни приоритетным направлением естествознания можно считать молекулярную биологию. Она тесно связана с микробиологией и в известном смысле является её детищем, так как в качестве основных моделей использует бактерии и вирусы, а одно из основных направлений молекулярной биологии — молекулярная генетика — долгое время являлась не чем иным, как генетикой бактерий и бактериофагов. Изучение генетики бактерий имеет также и несомненный прикладной интерес, например в плане установления механизмов передачи патогенных свойств и устойчивости к лекарственным препаратам. Бактерии — удобная модель для генетических исследований. Их отличает: относительная простота строения генома, позволяющая выявлять мутанты с частотой 10~9 и ниже; гаплоидность, исключающая явление доминантности; половая дифференциация в виде донорских и реципиентыых клеток; наличие обособленных, и интегрированных фрагментов ДНК (плазмид, транспозонов и т.д.); лёгкость культивирования и возможность получения популяций, содержащих миллиарды микробных тел.

Как и у других организмов, совокупность генов бактериальной клетки — геном — определяет её свойства и признаки (генотип). Фенотип бактериальной клетки — результат взаимодействий между бактерией и окружающей средой — также контролирует геном (так как сами признаки закодированы в бактериальных генах).

Генетический материал бактерий

Ядерные структуры бактерий имеют характерное строение, отличающее их от ядер эукариотических клеток; их образуют так называемые хромати новые тельца, или нуклеоиды, лишённые оболочки и включающие в себя почти всю ДНК бактерии.

Ядерные структуры можно наблюдать в фазово-контрастный микроскоп, где они выглядят как менее плотные участки цитоплазмы. Для их выявления в фиксированных мазках предложена реакция Фёльгена-Россенбёка.

В растущих бактериальных клетках нуклеоиды активно делятся, их количество иногда достигает 2-4.

Прокариотический геном

У бактерий обычно имеется одна замкнутая кольцевидная хромосома, содержащая до 4000 отдельных генов, необходимых для поддержания жизнедеятельности и размножения бактерий, то есть бактериальная клетка гаплоидна, а удвоение хромосомы обычно сопровождается её делением.

Некоторые виды (например, Brucella melitensis)стабильно содержат две кольцевые хромосомы, другие (Leptospira interrogans)— одну кольцевую хромосому и одну большую плазмиду, третьи — одну линейную хромосому [Streptomyces ambofaciens), то есть обладают сложными геномами.

Бактериальная хромосома содержит до 5'106пар оснований. Для сравнения: геном человека составляет 2,9409пар оснований. Длина бактериальной хромосомы в развёрнутом состоянии составляет около 1 мм (Escherichia coli).

Некоторые бактерии содержат внехромосомные молекулы ДНК (плазмиды) и мобильные элементы (либо плазмидные, либо хромосомные).

Внехромосомные факторы наследственности

Внехромосомные факторы наследственности бактерий представлены плазмидами, вставочными последовательностями и транспозонами. Все они образованы молекулами ДНК, различающимися между собой по молекулярной массе, кодирующей ёмкости, способности к автономному реплицированию и др.

Плазмиды

Плазмиды— фрагменты ДНК с молекулярной массой порядка 10e-108D, несущие от 40 до БОгенов. Выделяют автономные (не связанные с хромосомой бактерии) и интегрированные (встроенные в хромосому) плазмиды.

Автономные плазмиды существуют в цитоплазме бактерий и способны самостоятельно репродуцироваться; в клетке может присутствовать несколько их копий.

Интегрированные плазмиды репродуцируются одновременно с бактериальной хромосомой. Интеграция плазмид происходит при наличии гомологичных последовательностей ДНК, при которых возможна рекомбинация хромосомной и плазмидной ДНК (что сближает их с профагами).

Плазмиды также подразделяют на трансмиссивные (например, F- или R-плазмиды), способные передаваться посредством конъюгации, и нетрансмиссивные.

Плазмиды выполняют регуляторные или кодирующие функции.

Регуляторные плазмиды участвуют в компенсировании тех или иных дефектов метаболизма бактериальной клетки посредством встраивания в повреждённый геном и восстановления его функций.

Кодирующие плазмиды привносят в бактериальную клетку новую генетическую информацию, кодирующую новые, необычные свойства (например, устойчивость к антибиотикам).

В соответствии с определёнными признаками, кодируемыми плазмидными генами, выделяют следующие группы плазмид.

F-плазмиды. При изучении процесса скрещивания бактерий оказалось, что способность клетки быть донором генетического материала связана с присутствием особого F-фактора [от англ. fertility,плодовитость]. F-плазмиды контролируют синтез F-пилей, способствующих спариванию бактерий-доноров (F+) с бактериями-реципиентами (F ). В связи с этим можно указать, что сам термин «плазмида» был предложен для обозначения «полового» фактора бактерий (Джошуа Лёдерберг, 1952). F-плазмиды могут быть автономными и интегрированными. Встроенная в хромосому F-плазмида обеспечивает высокую частоту рекомбинации бактерий данного типа, поэтому их также обозначают как Hfr-плазмиды 1от англ. high frequency of recombinations, высокая частота рекомбинаций].

R-плазмиды [от англ. resistance, устойчивость] кодируют устойчивость к лекарственным препаратам (например, к антибиотикам и сульфаниламидам, хотя некоторые детерминанты устойчивости правильнее рассматривать как связанные с транспозонами [см. ниже]), а также к тяжёлым металлам. R-плазмиды включают все гены, ответственные за перенос факто-ров устойчивости из клетки в клетку.

Неконъюгативные плазмиды обычно характерны для грамположительных кокков, но встречаются также у некоторых грамотрицательных микроорганизмов (например, у Haemophilus influenzae, Neisseria gonorrhoeae).Они обычно имеют небольшие размеры (молекулярная масса примерно 1 —10' 106D). Обнаруживают большое количество мелких плазмид (более 30 на клетку), так как только наличие такого количества обеспечивает их распределение в потомстве при клеточном делении. Неконъюгативные плазмиды могут быть также перенесены из клетки в клетку при наличии в бактерии одновременно конъюгативных и неконъюгативных плазмид. При конъюгации донор может передать и неконъюгативные плазмиды за счёт связывания генетического материала последних с конъюгативной плазмидой.

Плазмиды бактериоциногении кодируют синтез бактериоцинов — белковых продуктов, вызывающих гибель бактерий того же или близких видов. Многие плазмиды, кодирующие образование бактериоцинов, также содержат набор генов, ответственных за конъюгацию и перенос плазмид. Подобные плазмиды относительно крупные (молекулярная масса 25-150-106D), их довольно часто выявляют у грамотрицательных палочек. Большие плазмиды обычно присутствуют в количестве 1~2 копий на клетку. Их репликация тесно связана с репликацией бактериальной хромосомы.

Плазмиды патогенности контролируют вирулентные свойства многих видов, особенно энтеробактерий. В частности F-, R-плазмиды и плазмиды бактериоциногении включают tax:+- транспозоны (мигрирующий генетический элемент, см. ниже), кодирующие токсинообразова- ние. Нередко /0Х+-транспозоны кодируют синтез интактных протоксинов (например, дифтерий- ного или ботулинического), активируемых клеточными протеазами, образование которых контролируют гены бактериальных хромосом.

Скрытые плазмиды. Криптические (скрытые) плазмиды не содержат генов, которые можно было бы обнаружить по их фенотипическому проявлению.

Плазмиды биодеградации. Обнаружен также ряд плазмид, кодирующих ферменты деградации природных (мочевина, углеводы) и неприродных (толуол, камфора, нафталин) соединений, необходимых для использования в качестве источников углерода или энергии, что обеспечивает им селективные преимущества перед другими бактериями данного вида. Патогенным бактериям подобные плазмиды придают преимущества перед представителями аутомикрофлоры.

Мигрирующие генетические элементы

Мигрирующие генетические элементы — отдельные участки ДНК, способные осуществлять собственный перенос (транспозицию) внутри генома. Транспозиция связана со способностью мигрирующих элементов кодировать специфический фермент рекомбинации — транспозазу.

Вставочные (инсерционные) последовательности [IS-элементы (англ. insertion,вставка, + sequence,последовательность)] — простейший тип мигрирующих элементов ; их величина не превышает 1500 пар оснований (в среднем 800-1400). IS-элементы самостоя-тельно не реплицируются и не кодируют распознаваемых фенотипических признаков. Содержащиеся в них гены обеспечивают только их перемещение из одного участка в другой.Основные функции IS-последовательностей — регуляция активности генов бактериальной клетки (могут инактивировать гены, в которые включились, или, встраиваясь в хромосому, проявлять эффект промотора, включающего либо выключающего транскрипцию соответствующих генов), индукция мутаций типа делеций или инверсий (при перемещении) и дупликаций (при встраивании в хромосому), координация взаимодействий плазмид, траспозонов и профагов (как между собой, так и бактериальной хромосомой).

Транспозоны (Tn-элементы) состоят из 2000-25 000 пар нуклеотидов, содержат фрагмент ДНК, несущий специфические гены, и два концевых IS-элемента. При включе-нии в ДНК бактерий транспозоны вызывают дупликации, при выходе из определённого участка ДНК — делеции, при выходе и включении обратно с поворотом фрагмента на 180° — инверсии. Транспозоны не способны к самостоятельной репликации и размножаются только в составе бактериальной хромосомы. Каждый транспозон обычно содержит гены, привносящие важные для бактерии характеристики типа множественной устойчивости к антибактериальным агентам. Поскольку транспозоны содержат гены, определяющие фенотипически выраженные признаки (например, устойчивость к антибиотикам), то их легче обнаружить, чем IS-элементы. В общем, для транспозонов характерны те же гены, что и для плазмид (гены устойчивости к антибиотикам, токсинообразования, дополнительных ферментов метаболизма).

Типы мутаций

Термин «мутация» предложил де Фриз как понятие «скачкообразного изменения наследственного признака» при изучении наследственности у растений. Позднее Бёйеринк распространил это понятие и на бактерии. Мутация — изменение первичной структуры ДНК, проявляющееся наследственно закреплённой утратой или изменением какого-либо признака или группы признаков. Мутации подразделяют по происхождению, характеру изменений структуры ДНК, фенотипическим последствиям для клетки-мутанта и др. Факторы, вызывающие мутации, известны как мутагены. Они обычно имеют физическую или химическую природу. По происхождению выделяют мутации индуцированные, то есть вызванные искусственно, и спонтанные («дикие», возникают в популяции бактерий без видимого вмешательства извне).

Спонтанные мутации

К появлению спонтанных мутаций приводят ошибки репликации, неправильное формирование комплементарных пар оснований или структурные искажения ДНК под действием естественный мутагенов. Спонтанные мутации могут вызывать благоприятные и неблагоприятные генетические изменения. Примерный уровень спонтанного мутирования — одна мутация на каждые 106-107 клеток. Численная доля мутантов в клеточной популяции для разных признаков различна и может варьировать от 10"4 до 10~п. Для конкретного гена частота мутирования составляет величину порядка 10“&, а для определённой пары нуклеотидов 10~8. Например, если на среду с антибиотиком посеять миллион бактерий, можно ожидать, что в результате спонтанной мутации одна колония выживет. Несмотря на то что уровень мутаций в популяции бактерий для отдельных клеток кажется незначительным, нужно помнить, что популяция бактерий огромна, и они размножается быстро. Следовательно, уровень мутаций с точки зрения целой популяции довольно значителен. Кроме того, появившиеся спонтанно и устойчивые к действию какого-либо антибиотика мутанты имеют при размножении преимущество по сравнению с «диким» типом бактерий и быстро образуют устойчивую популяцию.

Обратные мутации {реверсии) возвращают спонтанно мутировавшую клетку к исходному генетическому состоянию. Их наблюдают с частотой одна клетка на 107—10е (то есть по меньшей мере в 10 раз реже, чем прямые спонтанные мутации).

Индуцированные мутации

Химический мутагенез. Некоторые химические вещества (мутагены) значительно повышают частоту мутирования до одной мутантной клетки на 103-104клеток. К таким веществам относят аналоги азотистых оснований (например, бромурацил), включающиеся в молекулу ДНК и вызывающие вставку некорректного основания при репликации (в частности, бромурацил аналогичен по структуре тимину, он включается в ДНК как партнёр аденина, а затем переходит в энольную форму и узнаётся полимеразой как цитозин, что приводит к включению гуанина вместо аденина); алкилирующие агенты (например, этилметансульфонат алкилиру- ет преимущественно атом азота гуанина); азотистая кислота, дезаминирующая азотистые основания; интеркалирующие агенты {например, акридиновые красители), внедряющиеся между основаниями ДНК и вызывающие увеличение расстояния между ними, что приводит к утрате нуклеотидов, включению дополнительной пары нуклеотидов и др.

Радиационный мутагенез обычно приводит к образованию пиримидиновых димеров. УФ-, рентгеновские лучи и другие виды ионизирующего излучения оказывают на микроорганизмы как летальное (подавляющее жизнедеятельность), так и мутагенное воздействие.

Мутации могут индуцировать следующие события: модификации оснований (изменения отдельных нуклеотидов), вставки (включение дополнительных оснований), делении (потеря одного основания или группы оснований) и деформации спирали ДНК.

Модификация оснований включает химическое изменение азотистого основания в кодирующей последовательности, что приводит к изменению кодона. В результате вместо одной аминокислоты кодируется другая либо возникает бессмысленный кодон.

Вставка либо делеция какого-либо основания (аналогов оснований) в ДНК приводит к фреймшифт-мутациям (мутации со сдвигом рамки считывания), что вызывает изменение позиции рамки считывания триплетного кодона, и, таким образом, изменение всех последующих кодонов.

Деформации спирали ДНК (структурные искажения ДНК) образуются в результате индуцированной УФ-излучением димеризации расположенных близко нуклеотидов (особенно ти- мина). Образовавшееся циклобутановое кольцо нарушает симметрию ДНК и препятствует правильной репликации. Репликация может быть нарушена также при образовании поперечных межцепочечных сшивок ДНК.

Б зависимости от синтеза «правильных» или «неправильных» полипептидов при считывании мРНК, отразившей изменения ДНК (то есть в зависимости от сохранения смысловой функции образующегося полипептида), различают несколько видов мутаций.

«Молчащие» мутации (мутации «без изменения смысла», то есть не вызывающие изменения аминокислотной последовательности белка). Их появление возможно вследствие вырожденности генетического кода. Получившийся в результате мутирования триплет кодирует ту же самую аминокислоту, что и исходный триплет, поэтому синтезируемый белок остаётся без изменений.

Миссенс-мутации (мутации «с изменением смысла») возникают при условии, что изменения кодирующей последовательности приводят к появлению в полипептиде иной аминокислоты. Получающийся изменённый белок может быть функциональным или нефункциональным в зависимости от значимости затронутой мутацией области.

Нонсенс-мутации («антисмысловые», «бессмысленные» мутации) приводят к образованию одного из трёх кодонов-терминаторов (УАГ, УАА, УГА), вызывающих преждевременное окончание синтеза полипептидной цепи. Когда рибосома достигает такого кодона, процесс элонгации полипептидной цепи заканчивается, и высвобождается неполный пептид (вероятно, такое действие терминальных кодонов обусловлено отсутствием тРНК, связывающихся с данными кодонами). Эта мутация приводит либо к синтезу очень коротких нефункциональных белков, либо к полному прекращению синтеза белка.

 

ВЫВОДЫ

Изучение морфолого-анатомических признаков бактерий помогает установить систематическое положение той или иной группы бактерий и, в конечном итоге определить их практическую значимость.

По форме клеток бактерии разделяются: на шаровидные - кокки, палочковидные или цилиндрические - собственно бактерии и извитые - вибрионы спириллы и спирохеты. Между этими группами имеются переходные формы, например, кокко-бактерии.

Бактерии являются прокариотами (рис. 1.1) и существенно отличаются от клеток растений и животных (эукариотов). Они относятся к одноклеточным организмам и состоят из клеточной стенки, цитоплазматической мембраны, цитоплазмы, нуклеоида (обязательных компонентов бактериальной клетки). Некоторые бактерии могут иметь жгутики, капсулы, споры (необязательные компоненты бактериальной клетки).

Движение бактерий не является особенностью всех бактерий, только некоторые способны двигаться.

Процесс спорообразования у бактерий является стадией развития. Спора играет роль защитного приспособления, которым природа снабдила их для борьбы с неблагоприятными условиями. Способностью образовывать споры - особые тельца эллиптической и округлой формы обладают палочковидные бактерии.

Основным путем размножения у бактерий является бесполое размножение. Однако у некоторых бактерий встречается и половое размножение - конъюгация.

Жизнь бактерий, как и других живых существ, в упрощённом виде сводится к таким последовательным событиям: собственное воспроизведение -» обеспечение жизненных функций -» воспроизведение потомства. Нормальная реализация этого круговорота жизни для любого вида бактерий возможна лишь при развитии адекватных ответных реакций на любые воздействия окружающей среды, что во многом обеспечивается генетической информацией организма. Жизнь бактерий, равно как и всех живых существ, характеризуется ростом и размножением, то есть увеличением живой массы отдельной особи и популяции в целом за счет ассимиляции веществ, находящихся вне клетки.

Бактерии — удобная модель для генетических исследований.

 

СПИСОК ЛИТЕРАТУРЫ

1.Морфология и анатомия высших растений. Рубрика: Естественные науки. Название: Морфология и анатомия высших растений. Автор: А. А. Седов

2.Медицинская микробиология: конспект лекций для вузов В.А. Подколзина,

3. Микробиология - Дикий И.Л.

4. Руководство к лабораторным занятиям «Микробиология» Лысак В.Ю.

5. Ксения Викторовна Ткаченко «Микробиология»

6. Интернет сайт http://bibliofond.ru/view.aspx?id=606606

7. Интернет сайт http://www.studfiles.ru/preview/1777984/

8. Интернет сайт http://medbe.ru/materials/mikrobiologiya-i-biotekhnologii/

9. Интернет сайт http://atlas.ztom.ru/index.php/morfologiya-mm/anatomiya-bak-kletki-mm

10. Интернет сайт http://studopedia.ru/3_25993_morfologiya-i-ultrastruktura-bakterialnih-kletok.html