- Lektsia - бесплатные рефераты, доклады, курсовые работы, контрольные и дипломы для студентов - https://lektsia.info -

Молекулярные образы патогенов и образ-распознающие рецепторы. Система Toll-like-рецепторов



В настоящее время доказано, что иммунный ответ на инфекционные агенты (бактерии, вирусы) целиком зависит от взаимодействия клеток иммунной системы с типовыми структурными компонентами (или образами) микроорганизмов.

По своему молекулярному строению эти компоненты являются сходными у больших групп как патогенных, так и непатогенных микробов. Они получили название Молекулярные образы патогенов (МОП, или англ. PAMPpathogen-associated molecular patterns").

В свою очередь, система иммунитета распознает эти образы при помощи нескольких групп специализированных рецепторов. Данные рецепторы являются филогенетически древними, их структура является сходной у организмов различных видов, находящихся на разных этапах эволюционного развития.

Они получили общее название «образ-распознающих рецепторов – ОРР» (англ. – pattern-recognizing receptors, PRR).

Впервые подобные рецепторы были обнаружены при изучении развития организма мушки дрозофилы. Они были названы Toll-рецепторами. У дрозофилы Toll-рецепторы отвечают за дифференцировку тканей и органов. Кроме того, оказалось, что они принимают участие в защите от инфекций (например, грибковых).

Далее было показано, что сходные рецепторы имеются у высших организмов, в том числе у человека. По аналогии они получили название Toll-подобных рецепторов – Toll-like receptors, TLR. Сравнительно недавно были обнаружены и другие группы рецепторов, участвующие в распознавании образов патогенов

Группа Toll-like рецепторов (TLR).

У человека в настоящее время описано более различных 10 ТЛР. Они экспрессированы на многих клетках системы иммунитета. Наиболее важные функции они выполняют в системе антигенпредставляющих клеток (АПК) – дендритных клетках, макрофагах, клетках Лангерганса и т.д.

TLR-1 связывает липопептиды различных групп бактерий.

TLR-2 взаимодействует со многими структурными образами патогенных микробов – липотейхоевыми кислотами большинства грамположительных бактерий, липопротеинами боррелий и трепонем (включая возбудителя сифилиса), липопротеинами микобактерий туберкулеза, компонентами клеточных стенок нейссерий, листерий, грибов.

TLR-3 связывается с двухцепочечной РНК, что является важным для эффективного противовирусного иммунитета.

TLR-4 реагирует с ЛПС грамотрицательных бактерий (например, энтеробактериями), а также с белками теплового шока.

TLR-5 взаимодействует с бактериальным флагеллином (Н-антигеном бактерий).

TLR-9 связывается с бактериальными ДНК.

Другие группы образ-распознающих рецепторов.

К настоящему времени описаны новые типы рецепторов (NOD и RP), действующие аналогично рецепторам системы TLR.

 

Все Toll-like рецепторы играют важнейшую роль в естественном антимикробном иммунитете.

Основной функцией системы TLR является активация клеток иммунной системы после контакта с патогенным биологическим агентом. В частности, связывание структурных образов микробов Toll-подобными рецепторами на антигенпредставляющих дендритных клетках ведет к резкому усилению экспрессии костимуляторных молекул. Появление костимуляторных молекул обеспечивает активацию антигенспецифических Т лимфоцитов и их дальнейшую пролиферацию и дифференцировку. Без костимуляции Т клетки, наоборот, переходят в состояние неотвечаемости (анергии) к данному антигену.

Кроме того, взаимодействие образов патогенов с различными TLR ведет к перенаправлению иммунного ответа либо по клеточному, либо по гуморальному пути. Это связано с тем, что активация АПК через разные TLR ведет к продукции комплекса цитокинов, обладающих противоположным действием.

В свою очередь, разный цитокиновый профиль стимулирует превращение Тх0 либо в Тх1, либо в Тх2. Активация Тх1 приводит к развитию клеточного воспаления, Тх2 направляют иммунный ответ по гуморальному пути, обеспечивая синтез антител.

В частности, активация иммунного ответа через TLR-2 приводит к увеличению синтеза ИЛ-4 и ИЛ-10 с одновременным подавлением синтеза гамма-интерферона. Это обеспечивает активацию Тх2 и последующую продукцию антител с одновременным торможением клеточного воспаления.

Наоборот, активация посредством TLR-4 ведет к образованию Тх1 и продукции провоспалительных цитокинов (ИЛ-1, 2, 12, всех типов интерферонов, ФНО альфа).

Антигенпредставляющие клетки, их функции.

Антигенпредставляющие клетки (АПК) – это гетерогенная популяция лейкоцитов с весьма выраженной иммуностимулирующей активностью. Большая часть АПК обеспечивает активацию Т-хелперов, некоторые взаимодействуют с другими клетками иммунной системы.

Главную роль в системе АПК играют дендритные клетки (ДК). Они возникают из костно-мозговых миелоидных и моноцитарных предшественников под влиянием ГМ-КСФ, ФНОa, ИЛ-3.

АПК локализованы преимущественно в коже, лимфатических узлах, селезенке, эпителиальном и субэпителиальном слоях большинства слизистых оболочек и в тимусе. Относящиеся к ним клетки Лангерганса из кожи и других эпителиальных тканей мигрируют клеток по афферентным лимфатическим сосудам в паракортикальные области регионарных лимфоузлов. Там они взаимодействуют с Т-хелперами, представляя для них антиген (интердигитальные ДК). Такая миграция обеспечивает эффективный механизм доставки антигенов из кожи и слизистых оболочек к Тх-клеткам лимфоузлов.

Фолликулярные дендритные клетки (ФДК), презентирующие антигены В-клеткам, содержатся в первичных и вторичных фолликулах В-клеточных областей лимфоузлов, селезенки и лимфоидной ткани слизистых.

Свойства ДК:

– связывание, переработка и презентация белковых и липогликопротеиновых антигенов CD4 Тх, CD8 Т-клеткам (интердигитальные ДК) и В-лимфоцитам (фолликулярные ДК);

– секреция и выделение цитокинов, хемокинов, привлекающих и активирующих другие лейкоциты;

– индукция аутотолерантности Т-лимфоцитов в тимусе и периферических органах;

– участие в развитии аллергических и аутоаллергических (аутоиммунных) реакциях при патологической активации;

– участие в противоопухолевом иммунитете;

– удаление апоптозных клеток.

 

Система мононуклеарных фагоцитов, функции.

Эта система объединяет моноциты крови и различные макрофаги (купферовские клетки печени – звездчатые эндотелиоциты, альвеолярные макрофаги, мезангиальные макрофаги, макрофаги соединительной ткани, астроциты глии, остеокласты). Созревают под влиянием гранулоцитарно-макрофагальных колониестимулирующих факторов (ГМ-КСФ), выделяемых Т-лимфоцитами, фибробластами и макрофагами.

Функции макрофагов

· фагоцитоз;

· распознавание, переработка (процессинг) и представление (презентация) антигенов;

· секреция медиаторов системы иммунитета (монокинов).

 

 

Фагоцитоз: стадии, механизмы, виды.

Фагоцитоз.

Процесс фагоцитоза происходит в несколько стадий.

Стадия хемотаксиса представляет собой целенаправленное движение макрофагов к объекту фагоцитоза (например, микробная клетка), который выделяет хемотаксические факторы (бактериальные компоненты, анафилатоксины, лимфокины и т.д.). Компоненты бактериальных клеток, продукты активации комплемента, например С5а, и локально выделяемые цитокины и хемокины привлекают фагоцитарные клетки в очаг инфекции и воспаления.

Стадия адгезии реализуется 2 механизмами: иммунным и неиммунным. Неиммунный фагоцитоз осуществляется за счет адсорбции антигена на поверхности макрофага при помощи различных молекул (например, лектинов). В иммунном фагоцитозе участвуют Fc-рецепторы макрофагов к иммуноглобулинам и C3b-компоненту комплемента. В одних случаях макрофаг несет на своей поверхности антитела, за счет которых прикрепляется к клетке-мишени. В других – с помощью Fс-рецептора он сорбирует уже образовавшийся иммунный комплекс. Антитела и факторы комплемента, усиливающие фагоцитоз, называют опсонинами.

Стадия эндоцитоза (поглощения).

При этом происходит инвагинация мембраны фагоцита и обволакивание объекта фагоцитоза псевдоподиями с образованием фагосомы. В дальнейшем фагосома сливается с лизосомами и образуется фаголизосома.

Стадия переваривания.

В эту стадию происходит активация многочисленных ферментов, разрушающих объект фагоцитоза.

Фагоцитарные клетки обладают разнообразными механизмами уничтожения микробов.

Главный из них – продукция активных форм кислорода (АФК) через активацию гексозомонофосфатного шунта.

При этом восстанавливается молекулярный кислород с образованием супероксидного анион-радикала ('O2), из которого образуются потенциально токсичные гидроксильные радикалы (-ОН), синглетный молекулярный кислород и H2O2. В нейтрофилах под действием миелопероксидазы (и каталазы, содержащейся в пероксисомах, из перекисей в присутствии галоидов образуются дополнительные токсичные оксиданты, например гипоиодит и гипохлорит (производные НOI и HClO).

Дополнительный бактерицидный механизм основан на образовании токсичного для бактерий и опухолевых клеток оксида азота NO.

Кроме того, в фагоцитах имеются катионные белки, обладающие антимикробным действием. Важную роль играют дефензины – богатые остатками цистеина и аргинина катионные пептиды. Они вызывают образование ионных каналов в мембране микробной клетки.

Другие антимикробные механизмы: после слияния лизосом содержимое фаголизосомы временно подщелачивается, после чего рН ее содержимого падает, т. е. происходит подкисление, необходимое для действия лизосомных ферментов. Hекоторые грамположительные бактерии чувствительны к действию фермента лизоцима.

Различают завершенный и незавершенный фагоцитоз. При завершенном фагоцитозе происходит полное переваривание и бактериальная клетка погибает. При незавершенном фагоцитозе микробные клетки остаются жизнеспособными. Это обеспечивается различными механизмами. Так, микобактерии туберкулеза и токсоплазмы препятствуют слиянию фагосом с лизосомами; гонококки, стафилококки и стрептококки могут быть устойчивыми к действию лизосомальных ферментов, риккетсии и хламидии могут долго персистировать в цитоплазме вне фаголизосомы.

Последняя стадия фагоцитоза – удаление непереваренных фрагментовбактерий и других объектов фагоцитоза.