- Lektsia - бесплатные рефераты, доклады, курсовые работы, контрольные и дипломы для студентов - https://lektsia.info -

Оптическая активность нефти.



Нефти способны вращать плоскость поляризации светового луча. В большинстве нефти вращают плоскость поляризованного луча вправо, но известны и левовращающие нефти. Установлено, чем моложе нефти, тем больше угол поворота поляризованного луча.

5. Люминесценция– это свечение под действием внешнего облучения. Это неотъемлемое свойство всех нефтей и природных продуктов их преобразования.

Электропроводность.

Нефти являются диэлектриками, т.е. не проводят электрический ток.

Нефти обладают высоким удельным сопротивлением (1010 - 1014 Ом.м).

Температура кипения углеводородов.

Температура кипения углеводородов зависит от их строения. Чем больше атомов углерода входит в состав молекулы, тем выше температура кипения.

У нафтеновых и ароматических УВ, у которых атомы углерода соединены в циклы (кольца), температура кипения выше, чем у метановых.

Природная нефть содержит компоненты, выкипающие в широком интервале температур от 300до6000 С.

Фракции нефтей, выкипающие при температуре 600С, называются петролейным эфиром; до 2000 – бензином; от 200 до 3000 С – керосином; от 300 до 4000 С – газойлями; от 400 до 5000 С – смазочными маслами; свыше 5000 С – асфальтами.

8. Температура застывания и плавления различных нефтей неодинаковая.

Температура застывания нефти зависит от её состава. Чем больше в ней твердых парафинов, тем выше температура застывания. Смолистые вещества оказывают противоположное влияние

 

ФИЗИКО – ХИМИЧЕСКИЕ СВОЙСТВА ГАЗОВ

 

Углеводородные газы – постоянный спутник нефти. В природе можно встретить чисто газовые залежи, но чисто нефтяных залежей нет.

В земной коре газ может находиться в следующих видах:

1. В свободном состоянии (газы газовых шапок).

2. В растворённом состоянии (газы, растворённые в нефти и в воде).

3. В твёрдом состоянии (при определённых температурах и давлении молекулы газы, проникая в кристаллическую решётку воды, образуют гидраты).

4. Содержатся в пустотах горных пород.

5. В газовых струях (вулканические, тектонические).

 

Природный газ представляет собой смесь предельных углеводородов: метан, этан, пропан, бутан. Среди которых всегда преобладают метан (СН4) – до 98%. В небольших количествах могут присутствовать другие газы.

Различают чистые и попутные газы.

Чистые (сухие) газы представлены в основном метаном (98%) и небольшого количества его гомологов.

Попутные (жирные) - это газы, растворённые в нефтях, отличаются от «сухих» значительным содержанием этана, пропана и бутана (до 50%).

 

ФИЗИЧЕСКИЕ СВОЙСТВА ГАЗОВ

 

1. Плотность газа – масса 1 м 3 газа при температуре 00 и давлении 0,1 МПа (760 мм. рт. столба). Плотность газа зависит от давления и температуры. Плотность газов изменяется в пределах 0,55 – 1 г/см3.

Обычно используется относительная плотность по воздуху (безразмерная величина – отношение плотности газа к плотности воздуха; при нормальных условиях плотность воздуха 1, 293 кг/м3).

2. Вязкость газов – внутреннее трение газов, возникающее при его движении. Вязкость газов очень мала 1 . 10-5 Па.с. Столь низкая вязкость газов обеспечивает их высокую подвижность по трещинам и порам.

3. Растворимость газов –одно из важнейших свойств. Растворимость газов в нефти или в воде при давлении не более 5 МПа подчиняется закону Генри, т.е. количество растворённого газа прямо пропорциональнодавлению и коэффициенту растворимости.

Vi = ki P

При более высоких давлениях растворимость газа определяется уже целым рядом показателей: температурой, химическим составом, минерализацией подземных вод и др. Растворимость углеводородных газов в нефтях в 10 раз больше, чем в воде. Жирный газ лучше растворяется в нефти, чем сухой. Более лёгкая нефть растворяет больше газа, чем тяжёлая.

4. Критическая температура газа. Для каждого газа существует температура, выше которой он не переходит в жидкое состояние, как бы не было велико давление, т.е. критическая t (для СН4 tкр = –82,10С). Гомологи метана могут находиться в жидком состоянии (для С2Н6 tкр = 32,20С, С3Н8 tкр = 97,00С).

5. Диффузия – это самопроизвольное перемещение газов на молекулярном уровне по направлению уменьшения концентраций.

6. Объёмный коэффициент пластового газа – это отношение объёма газа в пластовых условиях к объёму того же газа в стандартных условиях

(T =00 и P=0,1 МПа).

Вг= Vг пл /Vг ст

 

Объём газа в пласте в 100 раз меньше, чем в стандартных условиях, т.к. газ обладает сверхсжимаемостью.

 

ГАЗОКОНДЕНСАТЫ

 

Не только газ способен растворяться в нефти, но и нефть может растворяться в газе. Это происходит при определённых условиях, а именно:

1) объём газа больше объёма нефти;

2) давление 20-25 МПа;

3) температура 90-950С.

При этих условиях жидкие углеводороды начинают растворяться в газе. Постепенно смесь полностью превращается в газовую. Это явление называется ретроградным испарением.Приизменении одного из условий, например, при понижении давления залежи в процессе разработки из этой смеси начинает выделяться конденсат в виде жидких углеводородов. Его состав: С512(пентан) и выше. Это явление называется ретроградной конденсацией.

Газоконденсат – жидкая часть газоконденсатных скоплений. Газоконденаты называют светлыми нефтями, так как они не содержат асфальто-смолистых веществ. Плотность газоконденсата 0,65-0,71 г/см3 . Плотность газоконденсатов увеличивается с глубиной, также она меняется (обычно увеличивается) в процессе разработки.

Различают сырой конденсат и стабильный.

Сырой представляет собой извлеченную на поверхность жидкую фазу, в которой растворены газообразные компоненты. Сырой конденсат получают непосредственно в промысловых сепараторах при давлениях и температурах сепарации.

Стабильный газоконденсат получают из сырого путем его дегазации, он состоит из жидких углеводородов (пентана) и высших.

ГАЗОГИДРАТЫ

Большинство газов образуют с водой кристаллогидраты – твёрдые вещества. Эти вещества называются газогидраты и образуются при низких температурах, высоких давлениях и на небольших глубинах. По своему виду напоминают рыхлый лёд или снег. Залежи такого типа обнаружены в районах вечной мерзлоты Западной и Восточной Сибири и в акваториях северных морей.

Проблема использования газогидратов пока в достаточной степени не разработана. Все вопросы добычи газогидратов сводятся к созданию в пласте таких условий, при которых бы газогидраты разложились на газ и воду.

Для этого необходимо:

1) снижение давления в пласте;

2) повышение температуры;

3) добавка специальных реагентов.

 

Горные породы как вместилища нефти и газа

ПОРОДЫ - КОЛЛЕКТОРЫ

 

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать при разработке, называются коллекторами.

Большинство пород-коллекторов имеют осадочное происхождение. Коллекторами нефти и газа являются как терригенные (пески, песчаники и алевролиты), так и карбонатные (известняки, доломиты, мел) породы.

По типу порового пространства выделяют три группы коллекторов нефти и газа:

1.Поровые (гранулярные). Они характерны для обломочных пород.

2.Трещинные. Они характерны для любых горных пород.

3. Каверноз­ные. Они характерны для карбонатных пород.

В природе часто развиты смешанные типы коллек­торов. Способность породы быть коллектором обусловлена её фильтрационно-ёмкостными свойствами: пористостью и проницаемостью.

ПОРИСТОСТЬ

 

Пористость горной породы – это свойство породы, заключающееся в наличии в ней всякого рода пустот (пор, каверн, микро - и макротрещин).

Различают общую, открытую, эффективную и закрытую пористость.

Общаяпористость – это объём всех пор в породе. Коэффициент общей пористости представляет собой отношение объёма всех пор к общему объёму породы:

Kп.=Vп/Vо

Открытаяпористость – это объём сообщающихся между собой пор, каверн, трещин. Коэффициент открытой пористости равен отношению объёма открытых пор к объёму образца породы:

Kоп=Vоп/Vо

Коэффициент открытой пористости отражает способность породы заполняться флюидом через сообщающиеся поры. Экспериментально он определяется насыщением керосином образца горной породы и находится по соотношению объема вошедшего в сухой образец керосина и объема образца. Считается, что керосин заполняет только сообщающиеся поры.

Эффективнаяпористость – это объём тех пор и соединяющих их каналов, по которым возможно перемещение флюидов и извлечение их при разработке. Коэффициент эффективной пористости равен отношению объёма пор, через которые возможно движение нефти, воды и газа при определённых температурах и градиентах давления к объёму образца породы:

Kэп=Vэп/Vо

Коэффициент эффективной пористости экспериментально находится путем заполнения образца искусственно приготовленной смесью нефтяного флюида, моделирующей его свойства.

Под закрытойпористостью подразумевается объём изолированных пор, не имеющих связи с другими пустотами.

Пористость измеряется в процентах. Величина коэффициента пористости горных пород может достигать до 40%.

По размерам все пустоты или поры делятся на:

1. Сверхкапиллярные (крупнее 0,5мм). Движение флюидов подчинено законам гидравлики (нефть и газ перемещаются под действием гравитационных сил).

2. Капиллярные(размеры 0,5 – 0,0002 мм). Движение жидкости затруднено вследствие сил молекулярного сцепления.

3. Субкапиллярные (размеры менее 0,0002 мм). Фильтрация воды по таким порам невозможна. Возможен процесс диффузии –это самопроизвольное перемещение веществ на молекулярном уровне по направлению уменьшения концентрации. Субкапиллярные поры характерны для глинистых пород.

ПРОНИЦАЕМОСТЬ

Проницаемость– способность горных пород пропускать через себя жидкость или газы при наличии перепада давления. Очень часто породы, обладая довольно большой пористостью (например, глины, пористость которых достигает до 40 %), практически не проницаемы. Вследствие чего они не могут отдавать содержащиеся в их порах нефть и газ. Поэтому для оценки практической значимости коллекторов необходимо иметь сведения и о пористости, и о проницаемости.

Различают следующие виды проницаемости: абсолютная, эффективная (фазовой) и отно­сительная.

1. Абсолютнаяпроницаемость – это проницаемость, измеренная при прохождении через породу какого–либо флюида в условиях полного насыщения пор породы этим флюидом.

2. Эффективная (фазовая)проницаемость – это проницаемость, определённая по какому–либо флюиду в присутствии в породе другого флюида.

3. Относительнаяпроницаемость определяется отношением эффективной проницаемости к абсолютной. Выражается безразмерной величиной меньше 1.

Проницаемость является одним из важнейших факторов миграции нефтегазовых флюидов. Она подчиняется закону Дарси, согласно которому скорость линейной фильтрации и расход жидкости, прошедшего через пористую среду площадью при струйном ламинарном потоке, прямо пропорциональны перепаду давлений и обратно пропорциональны его динамической вязкости:

V= Q / F =kпр∆P / μ L, где

 

V – скорость линейной фильтрации флюида (м/c);

Q – расход жидкости (м3/c);

F – площадь поперечного сечения (м2);

kпр – коэффициент проницаемости (м2 );

∆P – перепад давления (Па);

μ – динамическая вязкость (Па*с);

L – длина образца (м).

 

Коэффициент проницаемости пропорционален расходу жидкости, его вязкости и длине образца и обратно пропорционален ее площади и перепаду давлений:

Kпр=Qμ L / F ∆P.

В системе СИ коэффициент проницаемости измеряется в м2. Проницаемость в 1 м2 – это очень большая величина. В природе таких высокопроницаемых пород не существует, поэтому проницаемость горных пород оценивается в микрометрах квадратных:

1 мкм2 = 1 *10-6м2.

До введения системы СИ в системе СГС в качестве единицы измерения проницаемости использовалась величина Дарси (Д). В настоящее время за единицу проницаемости принимается 1 мкм2 – это такая проницаемость, при которой через поперечное сечение в 1 см 2 при перепаде давления в 0,1 МПа за 1 с проходит 1 см 3 жидкости вязкостью в 0, 001 Па с:

1Д=1,02*10-12м2=1 мкм2

1мД=0,001 мкм2.

По величине коэффициента проницаемости породы-коллектораделятся на 5 классов:

I – очень хорошо проницаемые более 1 мкм2;

II – хорошо проницаемые - 0,1- 1 мкм2;

III – среднепроницаемые - 0,01 – 0,1 мкм 2;

IV – слабопроницаемые - 0,001 – 0, 01 мкм2;

V – непроницаемые менее 0, 001 мкм2.

Практическое значение с точки зрения нефтенакопления и нефтеотдачи имеют коллекторы первых трёх классов, а для газов также и четвёртый класс.

Проницаемость пород – коллекторов зависит от:плотности укладки и взаимного расположения зерен (рис.5); степени отсортированности, цементации и трещиноватости; взаимосообщаемости пор, каверн и трещин.

 

 

Рис. 5. Схема укладки сферических зёрен одного размера

при ромбоэдрической (а) и кубической (б) упаковках.