Основные способы очистки сточных вод и их характеристика
Лекции.ИНФО


Основные способы очистки сточных вод и их характеристика



В настоящее время существуют следующие способы очистки сточных вод: механическая, физико-химическая, химическая и биохимическая.

Механическая очистка служит для отделения нерастворенных веществ путем процеживания, отстаивания, фильтрования и центрифугирования (рис. 6.1.). Применяют ее как предварительную перед другими способами очистки или в случаях, когда сточные воды, прошедшие через упомянутые сооружения, используют для целей производства или при приемлемых показателях выпускают в водоем. Воды, прошедшие механическую очистку, как правило, нужно также обезвреживать путем хлорирования.

Рис. 6.1. Схема отстойника (механическая очистка сточных вод)

Для очистки сточных вод от взвешенных веществ используют процеживание, отстаивание, обработку в поле действия центробежных сил и фильтрование.

Химические и физико-химические способы применяют для очистки производственных сточных вод от коллоидных и растворенных веществ. Для этого в соответствии с характером загрязнений в воду вводят специальные реагенты, пропускают воздух или пар, используют электролиз и ионообменные материалы.

Физико-химические методы очистки. Данные методы используют для очистки от растворенных примесей, а в некоторых случаях и от взвешенных веществ. Многие методы физико-химической очистки требуют предварительного глубокого выделения из сточной воды взвешенных веществ, для чего широко используют процесс коагуляции.

В настоящее время в связи с использованием оборотных систем водоснабжения существенно увеличивается применение физико-химических методов очистки сточных вод, основными из которых являются флотация, экстракция, нейтрализация, сорбция, ионообменная и электрохимическая очистка, гиперфильтрация, эвапорация, выпаривание, испарение и кристаллизация.

Флотация предназначена для интенсификации процесса всплывания маслопродуктов при обволакивании их частиц пузырьками газа, подаваемого в сточную воду. В основе этого процесса имеет место молекулярное слипание частиц масла и пузырьков тонкодиспергированного в воде газа. Образование агрегатов «частица – пузырьки газа» зависит от интенсивности их столкновения друг с другом, химического взаимодействия содержащихся в воде веществ, избыточного давления газа в сточной воде и т. п.

В зависимости от способа образования пузырьков газа различают следующие виды флотации: напорную, пневматическую, пенную, химическую, вибрационную, биологическую, электрофлотацию и др.

В настоящее время на станциях очистки широко используют электрофлотацию, так как протекающие при этом электрохимические процессы обеспечивают дополнительное обеззараживание сточных вод. Кроме того, применение для электрофлотации алюминиевых или стальных электродов обусловливает переход ионов алюминия или железа в раствор, что способствует коагулированию мельчайших частиц механических примесей сточной воды.

Экстракция сточных вод основана на перераспределении примесей сточных вод в смеси двух взаимнонерастворимых жидкостей (сточной воды и экстрагента).

Нейтрализация сточных вод предназначена для выделения из них кислот, щелочей, а также солей металлов на основе кислот и щелочей. Процесс нейтрализации основан на объединении ионов водорода и гидроксильной группы в молекулу воды. Наиболее дешевым и доступным реагентом для нейтрализации кислых сточных вод является гидроокись кальция (гашеная известь).

На практике используют три способа нейтрализации сточных вод:

– фильтрационный – путем фильтрования сточной воды через насадки кусковых или зернистых материалов;

– водно-реагентный – добавлением в сточную воду реагента в виде раствора или сухого вещества (извести, соды или шлака); нейтрализующим раствором может быть и щелочная сточная вода;

– полусухой – перемешиванием высококонцентрированных сточных вод (например, отработанного гальванического раствора) с сухим реагентом (известью, шлаком) с последующим образованием нейтральной тестообразной массы.

Сорбцию применяют для очистки сточных вод от растворимых примесей. В качестве сорбентов используют любые мелкодисперсные материалы (золу, торф, опилки, шлаки, глину); наиболее эффективный сорбент – активированный уголь.

Ионообменную очистку применяют для обессоливания и очистки сточных вод от ионов металлов и других примесей. Очистку осуществляют ионитами–синтетическими ионообменными смолами, изготовленными в виде гранул размером 0,2...2 мм. Иониты изготовляют из нерастворимых в воде полимерных веществ, имеющих на своей поверхности подвижный ион (катион или анион), который при определенных условиях вступает в реакцию обмена с ионами того же знака, содержащимися в сточной воде.

Электрохимическая очистка, в частности, электрохимическое окисление осуществляется электролизом и реализуется двумя путями окислением веществ путем передачи электронов непосредственно на поверхности анода или через вещество–переносчика, а также в результате взаимодействия с сильными окислителями, образовавшимися в процессе электролиза

Электрохимическое окисление применяют для очистки сточных вод гальванических процессов, содержащих простые цианиды (КС1, NaCI) или комплексные цианиды цинка, меди, железа и других металлов Электрохимическое окисление осуществляют в электролизерах (обычно прямоугольной формы) непрерывного или периодического действия. На аноде происходит окисление цианидов в малотоксичные и нетоксичные продукты (цианаты, карбонаты, диоксид углерода, азот), а на катоде –разряд ионов водорода с образованием газообразного водорода и разряд ионов меди, цинка, кадмия, образующихся при диссоциации комплексных анионов с содержанием CN-группы.

Гиперфильтрация (обратный осмос) реализуется разделением растворов путем фильтрования их через мембраны, поры которых размером около 1 нм пропускают молекулы воды, задерживая гидратированные ионы солей или молекулы недиссоциированных соединений. По сравнению с другими методами очистки гиперфильтрация требует малых энергозатрат установки для очистки конструктивно просты и компактны, легко автоматизируются, фильтрат имеет высокую степень чистоты и может быть использован в оборотных системах водоснабжения, а сконцентрированные примеси сточных вод легко утилизируются или уничтожаются.

Эвапорация реализуется обработкой паром сточной воды с содержанием летучих органических веществ, которые переходят в паровую фазу и вместе с паром удаляются из сточной воды.

Выпаривание, испарение и кристаллизацию используют для очистки небольших объемов сточной воды с большим содержанием летучих веществ.

Биологическая очистка основана на способности некоторых микроорганизмов использовать для своего развития органические вещества, содержащиеся в сточных водах в коллоидном и растворенном состоянии. Этот способ применяют после того, как сточная вода очищена от минеральных и нерастворимых органических веществ. Он позволяет почти полностью удалить загрязнения органического происхождения. Биологическую очистку проводят в естественных условиях – на полях орошения, полях фильтрации или в биологических прудах, а также в искусственных условиях – в биологических фильтрах и аэротенках.

Она основана на способности микроорганизмов использовать для питания содержащиеся в сточных водах органические вещества (кислоты, спирты, белки, углеводы и т.п. Биологическую очистку осуществляют в природных и искусственных условиях.

Сточные воды в природных условиях очищают на полях фильтрации, полях орошения и в биологических прудах. Очистку и бытовых, и производственных сточных вод на полях фильтрации и полях орошения в настоящее время используют очень редко в связи с малой пропускной способностью единицы площади полей и непостоянством состава производственных сточных вод, а также из-за возможности попадания на поля токсичных для их микрофлоры примесей.

Биологические фильтры широко используют для очистки и бытовых, и производственных сточных вод. В качестве фильтровального материала для загрузки биофильтров применяют шлак, щебень, керамзит, пластмассу, гравий и т. п.

Окситенки обеспечивают более интенсивный процесс окисления органических примесей по сравнению с аэротенками за счет подачи в них технического кислорода и повышения концентрации активного ила. Для увеличения коэффициента использования подаваемого в объем сточной воды кислорода реактор окситенка герметизируют. Очищенная от органических примесей сточная вода из реактора поступает в илоотделитель, в котором происходит выделение из нее отработанного ила. При проектировании окситенков необходимо предусматривать мероприятия по обеспечению их пожаровзрывобезопасности с учетом вредных и опасных факторов, имеющих место при эксплуатации систем с использованием газообразного кислорода.


Классификации качества воды

1)Система классификации качества воды по А.А. Былинкиной и С.М. Драчеву. Эта классификация впервые заложила основы шестибалльной шкалы классификации водоемов. Оценка качества воды осуществляется с использованием следующих показателей:

химические показатели состояния водоемов (табл. 9.2);

бактериологические и гидробиологические показатели (табл. 9.3);

показатели состояния водоемов по физическим и органолептическим свойствам (табл. 9.4).

Таблица 9.3

Бактериологические и гидробиологические показатели

Степень загрязнения Бактериологические Яйца гельминтов, в 1 м3 Санитарно-гидробиологические
Кишечная палочка (титр) Сапрофитные микроорганизмы, в 1 мл Пря-мой счет Сапробность Биологический показатель загрязнения
Очень чистые 10–100 a×10 Нет Ксеносапробная 0–5
Чистые 10–1 a×100 Нет Олигосапробная 6–10
Умеренно загрязненные 1–0.05 a×1000 1–3 b-Мезосапробная 11–20
3агрязненные 0.05–0.005 a×10000 a-Мезосапробная 81–60
Грязные 0.005–0.001 a×100000 Полисапробная 61–99
Очень грязные <0.001 a×1000000 Полисапробная

Таблица 9.2

Химические показатели состояния водоемов

Степень загрязнения Растворенный кислород БПК5, в мг/л Окисляемость, в мг/л О2 Аммонийный азот, в мг/л Токсичные вещества в долях ПДК Радио- активность общая в долях норматива
в мг/л % насыщения
Лето Зима
Очень чистые 14–13 0.5–1.0 0.05 0.1
Чистые 12–11 1.1–1.9 0.1 0.1–0.9 0.1
Умеренно загрязненные 7–6 10–9 2.0–2.9 0.2–0.3 1.0–5.9 1.0
3агрязненные 5–4 5–4 3.0–3.9 0.4–1.0 6.0–10.9
Грязные 3–2 5–1–0 4.0–10.0 5–15 1.1–3.0 11.0–20.0
Очень грязные >10 >15 >3 >20

 

Таблица 9.4

Показатели состояния водоемов по физическим и органолептическим свойствам

 

Степень загрязнения Взвешенные вещества мг/л Прозрачность Запах, в баллах Нефть     рН  
по Секки, в м по Снеллену, в см в баллах в мг/л  
 
Очень чистые 1–3 >2 >30 0.00 6.5–8.0  
Чистые 4–10 2–1 30–20 0.1–0.2 6.5–8.5  
Умеренно загрязненные 11–19 1–0.3 19–3.0 0.3 6.0–9.0  
3агрязненные 20–50 0.3–0.1 2.0–1.0 5–6, 9–10  
Грязные 51–100 0.1–0.02 <1.0–0.5 5–6, 9–10  
Очень грязные >100 <0.02 < 0.5 2–4, 11–13  

2) Комплексная экологическая классификация качества поверхностных вод суши Жукинского А.П.

 

Таблица 9.6

Схема комплексной экологической классификации по О.П. Оксиюк и В.Н. Жукинскому

 

Показатели Градации качества Тип
Группа Подгруппа Класс Разряд
Солевой состав Степень минерализации (соленость) Пресные гипогалинные А
олигалинные
Солоноватые мезогалинные
полигалинные
Соленые эугалинные
ультрагалинные
Ионный состав по О.А. Алекину [1946]: Ca2+, Mg2+, Na+ Гидрокарбонатные В
Сульфатные
Хлоридные
Эколого-санитарная (трофосап-робиологическая) Гидрофизические Предельно чистая Предельно чистая С
Биотрофные и гидрохимические
Гидробиологические Чистая Очень чистая
Бактериологические Вполне чистая
Биоиндикация сапробности
Трофность Удовлетворительной чистоты Достаточно чистая
Эколого-токсикологическая Содержание токсичных веществ неорганические Слабо загрязненная
органические Загрязненная Умеренно загрязненная
Токсичность по биотестам Сильно загрязненная
Радиоэко-логическая Вездесущие радионуклиды Грязная Весьма грязная
Коррозионные радионуклиды
Осколки деления Предельно грязная

 









Читайте также:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 154;


lektsia.info 2017 год. Все права принадлежат их авторам! Главная